https://doi.org/00.0000/xxxxx
Dasinya Journal for Engineering and Informatics. 2025,1,7.

r1 DASINYA

L 4 for engineering and informatics

Review

A Review on Deep Learning Frameworks for Dental Anomaly
and Disease Classification

Dawlat Abdulkarim Ali* *® , Haval Tariq Sadeeq?

1 Department of Information Technology, Technical College of Informatics, Akre University for Applied Science, Kurdi-
stan Region-Iraq'; dawlat.ali@dpu.edu.krd

2 Artificial Intelligence Department, Technical College of Duhok, Duhok Polytechnic University, Duhok 42001, Kurdi-
stan Region, Iraq 2; haval.tarig@édpu.edu.krd
Correspondence: dawlat.ali@dpu.edu.krd

Abstract

Oral anomalies and dental diseases affect billions of people worldwide, yet diagnosis
often relies on manual interpretation of radiographs and clinical images, which is
time-consuming and prone to variability. Advances in deep learning (DL) have opened
new opportunities for accurate, efficient, and scalable dental diagnostics. This review
examines state-of-the-art DL frameworks applied to dental imaging modalities, including
intraoral RGB photographs, bitewing and periapical radiographs, panoramic radiog-
raphy, and cone-beam computed tomography (CBCT). The analysis covers preprocessing
pipelines, backbone architectures (convolutional neural networks and vision transform-
ers), task designs (classification, detection, segmentation, hybrid models), and strategies
for addressing data imbalance, calibration, and uncertainty. Findings reveal that modal-
ity-specific preprocessing enhances reliability, hybrid CNN-Transformer models im-
prove performance for wide-field or complex tasks, and segmentation-assisted classifi-
cation increases sensitivity to subtle lesions. Moreover, calibrated probability outputs,
robust evaluation metrics (ROC-AUC, PR-AUC), and external validation are essential for
clinical readiness. The review identifies critical gaps—limited cross-site generalization,
under-reported calibration, and scarce real-world validation—and outlines future direc-
tions such as label-efficient learning, federated training, and calibration-first pipelines.
With these safeguards, DL-based systems can evolve from experimental tools to trust-
worthy clinical aids that strengthen diagnostic accuracy and decision support in dentis-

try.

Keywords: Dental imaging; deep learning; convolutional neural networks (CNNs); vi-
sion transformers (ViT); Class imbalance; probability calibration.

1. Introduction

Oral and dental health is a vital component of overall well-being, yet dental anomalies and oral diseases remain
among the most prevalent chronic conditions worldwide. Approximately 3.5 billion people are affected, with the
burden driven primarily by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion) [1,2]. When un-
treated, these conditions lead to pain, infection, tooth loss, and systemic complications that impair nutrition, speech,
and quality of life; the burden is amplified in low- and middle-income countries where preventive services and ad-
vanced diagnostics are limited [1]. Traditional diagnosis relies on clinical assessment and manual interpretation of
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radiographs, which is time-consuming, subjective, and prone to inter-observer variability; overlapping anatomy, im-
age noise, and early lesions further complicate detection[3].

Against this backdrop, artificial intelligence (AI) —particularly deep learning (DL)—has accelerated progress in
medical image analysis, including transformer-based vision models such as ViT and Swin that capture long-range
context [4,5]. In dentistry, preliminary work demonstrates Al on panoramic radiographs for multi-condition screening
[6],while broader surveys of medical imaging emphasize scalable, data-efficient pipelines that transfer to clinical tasks
[7,8].The evidence base spans panoramic staging/measurement on OPG [9,10], multi-label screening from intraoral
RGB photographs [11,12], and three-dimensional analyses using CBCT and CBCT-IOS fusion to enrich anatomical
context [13,14]. Persistent methodological gaps remain [7] highlights the need for transparent intended-use claims,
external testing, and pre-specified operating points, alongside evaluation under class imbalance where PR-AUC com-
plements ROC-AUC to reflect clinically meaningful decision thresholds|[7].

Gap and novelty: Previous reviews have not consistently addressed probability calibration, explainability, and
deployment readiness across all major dental imaging modalities. This review targets that gap by integrating: (i) mo-
dality-aware preprocessing and class-imbalance remedies; (ii) calibrated, threshold-ready probabilities (ECE, reliability
diagrams) reported at clinically constrained operating points; and (iii) deployment artifacts (latency, memory footprint,
structured outputs) together with external, site-stratified validation aligned with contemporary reporting guidance.

Objectives: This review aims to:

compare CNN and transformer frameworks across dental modalities and tasks.

2. consolidate imbalance-aware objectives and calibration metrics (PR-AUC, Cohen’s x, ECE, reliability diagrams)
with clinically meaningful operating points.

3. Summarize deployment and reporting practices, including external validation, efficiency reporting, and integra-
tion into clinical systems.
Organization of the paper :Section 2 provides background and the theoretical framework; Section 3 reviews the
literature by modality and task; Section 4 analyzes model choices and trade-offs; Section 5 outlines challenges; Section 6
describes future directions; Section 7 presents actionable recommendations; and Section 8 concludes.

2. Background and Theoretical Framework

2.1 Machine Learning (ML): a concise orientation

Machine learning (ML) studies algorithms that improve at a task through experience (data) rather than
hand-written rules. Instead of prescribing decision logic, we provide examples and let the model infer patterns that
map inputs to outputs.

Core idea: ML assumes useful regularities exist in the data and seeks to approximate the unknown function that
generated them. The central challenge is generalization — performing well on new cases, not only on the training ex-
amples.

Data, features, and representations: Classic ML relied on human-designed features; modern approaches increas-
ingly learn representations directly from raw inputs (via deep models or self-supervised objectives), reducing manual
engineering|[7,8].

Model families (high level):

Linear models (logistic/linear regression): simple, interpretable baselines; effective with near-linear relations or
limited data;

Kernel methods (SVM, Gaussian processes): capture non-linear structure via similarity functions;

Tree ensembles (Random Forests, Gradient Boosting): robust to mixed types/outliers; strong tabular baselines;

Neural networks (feed-forward, CNNs, Transformers): flexible function approximators that scale with data and
compute.

Why ML works well now: The confluence of three reinforcing trends — (1) larger datasets, (2) more compute, and
(3) better algorithms (optimization, architectures, regularization) —has enabled rich, transferable representations across
vision, language, and structured data.

2.2 Deep Learning (DL): encoders, tasks, and objectives
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Deep learning (DL) is a branch of ML that uses multi-layer neural networks to learn complex functions directly
from raw data, with hierarchical features learned end-to-end[7]. Training adjusts weights to minimize a loss via back-
propagation and stochastic gradient methods (e.g., SGD, AdamW).

221 Key backbones

* CNNs (VGG, ResNet, DenseNet, Inception/Xception, EfficientNet, MobileNet, ConvNeXt/RegNet): exploit local
patterns; strong for images; compute-efficient and data-friendly; Representative references appear in §2.5.1.

¢ Vision Transformers (ViT, Swin): self-attention captures long-range context; well-suited to wide-field or
high-resolution inputs; typically benefit from stronger pretraining[4,5].

2.22 Task heads

* Classification (image/ROI label) for fast screening;

* Detection (bounding boxes) for focal findings;

* Segmentation (pixel/voxel masks) when geometry/staging matters;

* Seg—Cls (segmentation-assisted classification) to boost sensitivity for subtle, small targets.

2.2.3 Training essentials

* Optimization/regularization: SGD/AdamW, residual connections, normalization, dropout, weight decay, and data
augmentation (e.g., flips/rotations, MixUp, CutMix)[15,16];

¢ Losses under imbalance: class-weighted cross-entropy, Focal Loss for classification/detection[17], Dice/loU-aware
losses (e.g., Focal-Tversky and Generalized Dice for segmentation[18,19];

* Calibration: temperature scaling with reliability diagrams/ECE for decision-useful probabilities[20].

Evaluation & robustness: Use ROC-AUC and PR-AUC under skew; report sensitivity/specificity at clinically fixed
thresholds with confidence intervals. Prevent leakage with subject/site-level splits. Self-/semi-supervised pretraining
and careful augmentation improve cross-site transfer [8, 40].

2.3 Clinical Overview of Dental Anomalies and Oral Diseases

Global burden: Oral diseases are among the most common non-communicable conditions worldwide (~3.5 billion
affected), driven mainly by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion). Consequences
include pain, infection, tooth loss, and impaired nutrition, speech, and quality of life —especially in underserved set-
tings [1,2]

Routine diagnosis: Clinical examination plus radiographic interpretation remains standard, yet early or subtle le-
sions (e.g., proximal caries, incipient periapical radiolucencies) are frequently missed, and inter-observer variability
reduces reliability [3]. Imaging adds modality-specific cues: bitewings (interproximal enamel-dentin changes), peri-
apicals (apical radiolucency), OPG (jaw-wide screening), CBCT (3D tooth—bone anatomy), and intraoral RGB (col-
or/texture) [11],[21-24] Representative appearances are shown in Figure 1, and clinical targets are mapped to modality
and deep-learning (DL) task types in Table 1.

Brief disease primers (diagnostic signatures):

e Dental caries: enamel-dentin radiolucency; bitewings preferred for proximal lesions; conservative contrast han-
dling preserves faint signals [21,22];

e Gingivitis & calculus: erythema/edema and mineralized plaque; in RGB, white balance and ROI-centric framing
stabilize color cues [11];

e  Periodontitis: crestal bone-level reduction and angular defects; measurement/segmentation on BW/OPG with
stage-aware reporting [9,10];

e  Periapicallesions: apical radiolucency * cortical disruption; PA first, CBCT for 3D extent; Seg—Cls can improve
sensitivity for small lesions[13,24] ;

e  Tooth wear/erosion: glossy facets, enamel loss, cupping; standardized RGB capture mitigates illumination bias
(11];

e Oral mucosal ulcers: shallow ulcer base with erythematous halo and fibrin slough; careful annotation required
due to visual variability[11].
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Figure 1. Representative findings across modalities (clinical montage): (A) intraoral RGB; (B) PA/BW radiographs; (C)
OPG; (D) CBCT/IOS.

Table 1. Clinical targets mapped to primary imaging modality, radiologic signature, DL head(s), and Representative studies

Pachward path

Condition Primary modality Typical signature DL task focus Rep;!lslzlilet:tlve
Proximal /occlusal . .. Enamel-dentin ra- Classification/ [22],[3]
. Bitewing /Periapical . .
caries diolucency Detection
Periodontitis (bone ] . Cresta.l bone-level Measurement / 91, 1101
loss) Bitewing / OPG reduction; angular Seementation
defects gm
Periapical lesion Periapical / CBCT Aplcel rad.loluce.ncy; Detectlon.+ Seg- 1131261
cortical disruption mentation
Gl facets; Grading / 11
Tooth wear / erosion Intraoral RGB ossy wear ace- S ra- 'mg. (11l
enamel loss; cupping Classification
Developm-ental OPG / CBCT Miss.ingext'ra teeth; Mul-titlab.el [6], [3]
anomalies impactions classification
Mucosal inflamma- Redness; ulcer base; Lesion localization / [11]
Intraoral RGB

tion / ulcers

fibrin slough

Classification

I Note: OPG = orthopantomogram (panoramic radiograph); CBCT = cone-beam computed tomography; RGB = intraoral color im-

aging; DL = deep learning. “Typical signature” items are illustrative and may vary by exposure/positioning.

2.4 Imaging Modalities & Al Relevance

Modality-aware design: Tailor preprocessing and model choices to each modality’s physics/geometry to preserve
faint cues and avoid anatomical distortion [3].

The main practical points are:

¢ Intraoral RGB: white-balance/color-constancy — mild photometric jitter; ROI cropping; bounded augmenta-

tion[25]. see the preprocessing block in Figure 2.

*  Periapical/OPG: conservative contrast (mild CLAHE/gamma), small affine transforms; avoid heavy blur that

suppresses subtle radiolucencies [3]; key cautions are listed in Table 2;

e  CBCT/IOS: isotropic resampling and intensity harmonization; MAR when appropriate (document potential in-
tensity shifts); strict registration QA for CBCT «<IOS fusion[23,24,26]; the Seg—Cls variant is sketched in Figure 3.
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Figure 2. Reliability-aware workflow: preprocessing — encoder (CNN/Transformer) — uncertainty — calibration (ECE) — 154
fixed operating points 155
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Figure 3. Segmentation-assisted pipeline (Seg—Cls): enhancement/cropping/augmentation — feature backbone — pro- 157
posals/masks — calibrated decision with Grad-CAM overlays. 158
Table 2. Modalities, typical DL tasks, advantages/limitations, and practical notes. 159

Modality Typical tasks Advantages Limitations Practical notes
Caries, calculus, Rich color Illumination/ anfcf::}cl)lvg :uct(;l;ta:::c?
Intraoral RGB  mucosal lesions, /texture; low specular glare; yi

Periapical ra-
diograph

Bitewing radi-
ograph
Occlusal

radiograph

Panoramic
(OPG/DPR)

discoloration

Apical lesions; en-
dodontic status;
per-tooth assess-
ment

Proximal caries;
crestal bone levels

Impactions; super-
numeraries
Multi-finding
screening; anomaly
mining; staging

cost

High
root/detail
resolution

Good inter-
proximal visi-
bility

Wide occlusal
field

Global jaw
context

pose variability

Sensitivity to
projection
geometry

Overlap; hori-
zontal angula-
tion errors
Lower in-plane
resolution
Magnification;
over-
lap/distortion

crop to ROL; use
bounded color jitter.
Prefer conservative con-
trast operations (e.g.,
mild local contrast);
avoid heavy blur; small
affine only.

Minor rotations/affine
only; document align-
ment protocol.

Use multi-scale encod-
ers; moderate input size.
Multi-scale/long-range
encoders; careful gray-
scale normalization.
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Keypoint/segmentation

Cephalometric Skeletal relations; Standardized  Landmark vari- LOE. ]
pipelines; inter-rater

(lateral/PA) landmarking projections ability consistency checks.
Isotropic resampling;
Dose; lar-
Implants, patholo-  True volumet- ose; meta a MAR when needed;
CBCT (3D) ] tifacts; voxel size . . . L.
gy, root morphology ric anatomy ) intensity harmonization
variance
across scans.
Smooth meshes; rig-
I0S (3D sur- Occlusion; aligners; Accurate den- No internal id/non-rigid registration
face) surface fusion tal surfaces anatomy QA; fuse with
CBCT/OPG if available.
Earlv car- Non-ionizine: Limited FoV; Device calibration; di-
NILT/QLF/ ies/ yla ue/cracks: wantita & device availabil- mensionality reduction;
OCT /HSI ) plaq . ’ q ity; high dimen-  patch-based local 3D
tissue typing tive/spectral

sionality nets

2Notes: ROI = region of interest; BW = bitewing; PA = periapical; OPG/DPR = panoramic radiography; CBCT =
cone-beam computed tomography; IOS = intraoral surface scan; NILT = near-infrared light transillumination; QLF =
quantitative light-induced fluorescence; OCT = optical coherence tomography; HSI = hyperspectral imaging; MAR =
metal-artifact reduction; FoV = field of view. “Conservative contrast operations” = mild local contrast adjustments (e.g.,
CLAHE with gentle gamma) that preserve faint radiolucencies; “intensity harmonization” = matching intensity ranges
across scanners/exams.

2.5 CNN/Transformer Families & Heads

Scope: This section summarizes widely used image encoders (classic CNNs, modern convnets, vision transform-
ers) and links them to task heads (classification, detection, segmentation, Seg—Cls) that recur across dental imaging.
The goal is a practical “when to use what” map tied to data scale, lesion size/contrast, field-of-view, and deployment
constraints. Figures 2—-3 visualize the surrounding workflow choices; Tables 3—4 give side-by-side comparisons.

2.5.1 Convolutional encoders (representative families)

Convolutional encoders (CNNSs) are a practical default for dental imaging because they capture local textures and
edges, run efficiently on common hardware, and transfer well from ImageNet. With limited or imbalanced da-
tasets—typical in dentistry —CNN backbones often deliver strong, stable baselines for periapical, bitewing, and pan-
oramic tasks. Use them when latency/memory matter or when global long-range context is not the primary bottleneck.
e ResNet-50. Residual skips stabilize deep training and transfer well; a dependable default for periapical/OPG classifiers and

detectors. On small single-center sets, tighten regularization and calibrate probabilities to curb overfitting [27,20];

e VGG-16. Deep stacks of 3x3 convs with a large FC head; stable transfer features but heavy (~138 M params).

Mostly a baseline now when memory permits [28];

¢ DenseNet-121. Dense connections encourage feature reuse and strong gradients with good parameter efficiency;
watch activation memory during training [29]

e InceptionV3/Xception. Multi-scale (factorized) convs and auxiliary heads capture wide-field context useful for
OPG; prefer 22992 inputs; Xception’s depthwise separables are parameter-efficient [30,31];

e MobileNetV2/V3. Inverted residuals and NAS/SE refinements suit edge-class latency/power budgets (chair-
side/handheld). Report ECE and apply temperature scaling before fixing clinical thresholds;

e  EfficientNet / EfficientNetV2. Compound scaling offers strong accuracy-efficiency; BO-B3 reliable on
RGB/periapicals; larger variants need careful input sizing and memory planning [32,33]

e ConvNeXt /RegNet. “Modern conv” designs that match transformer-level accuracy with predictable compute;
check batch-1 latency for high-res OPG multi-finding and pick RegNetX/Y to meet millisecond budgets [34-36].

2.52 Vision transformers (global-context encoders)
Unlike CNNSs, vision transformers use self-attention to capture long-range context across patches

e ViT: Global self-attention over patch tokens; excellent long-range context but benefits from large pretraining or
strong regularization on smaller dental datasets [4];
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*  Swin Transformer: Shifted-window attention yields hierarchical, high-resolution features well suited to detec-
tion/segmentation on OPG and 3D; typically more data-efficient than vanilla ViT in medical imaging [5].
Rule of thumb: Prefer convnets (ResNet/DenseNet/EfficientNet) for limited data, high-SNR radiographs, and tight
latency; consider Swin/hybrids when long-range context is essential (panoramic, large-FoV, multi-finding) and com-
pute allows.

2.53 Task heads and their clinical fit

* (lassification (image/ROI label). Best for screening/global status; simple and fast but no localization. Pair with
calibrated thresholds for triage [20,41];

*  Object detection (boxes + scores). Targets focal findings (e.g., proximal caries, periapical cues). Focal Loss helps
with class/anchor imbalance [17].

*  Segmentation (pixel/voxel masks). Needed when geometry matters (bone-loss measurement, lesion extent).
Combine CE with Dice/IoU-aware losses; Focal-Tversky can boost small-structure sensitivity [18,19];

*  Seg—Cls (segmentation-assisted classification). Two-stage (masks — region features — final class) improves sen-
sitivity to small/low-contrast lesions and supports Grad-CAM overlays; useful for subtle periapical pathology
[9,12];

¢  DETR-style detectors. End-to-end set prediction with fewer hand-tuned priors; clean design but comparatively
data-hungry and slower to converge [37].

254 Data augmentation — task/modality-aware recipes

Good augmentation in dental imaging should stay anatomically plausible and respect imaging physics. The goal
is to boost generalization without washing out subtle diagnostic cues (e.g., faint interproximal radiolucencies or mild
mucosal erythema). Below are conservative, low-risk defaults by modality and task. Parameters are deliberately
modest; push them further only if you can justify with ablations and visual spot-checks[38].

General principles (apply everywhere)
1. Keep geometry believable. Use small rotations/translations/scale to avoid unrealistic tooth/bone deformation .

2. Protect diagnostic signal. Avoid heavy blur/sharpen and extreme photometricshifts that could hide early caries or
apical changes.

3. Matchreal-world variability. Use site/device-aware photometrics (e.g., color constancy for RGB; gentle local con-
trast for X-ray) to mimic clinical capture differences].

4. Preventleakage & document settings. Augment after patient-level splitting with site/scanner stratification; report
exact operators/ranges; calibrate probabilities (reliability diagrams/ECE) before fixing thresholds.

(A) Radiographs (BW/PA/OPG)
*  Geometry: rotations =+3-5°, tiny translations (<3%), scale =0.97-1.03; horizontal flip only when left-right sym-
metry is clinically acceptable.

*  Photometrics: mild local contrast (e.g.,, CLAHE clip 1.0-2.0; 8x8 grid) or gentle gamma ~0.9-1.1 to counter expo-
sure variability without over-enhancing edges.

* Notes: stay conservative to preserve faint proximal radiolucencies and apical signs; for OPG, pair with careful
grayscale normalization.

(B) Intraoral RGB photographs

¢  Color pre-normalization: white balance or color-constancy (e.g., Gray-World/Shades-of-Gray) to reduce de-
vice/lighting drift.

¢ Framing: ROI-centric random crops (scale =0.85-1.00; aspect =0.9-1.1) to maintain tooth/gingival context.

¢  Conservativejitter: brightness +0.10-0.18, contrast +0.08-0.15, saturation +0.10-0.20, hue +5-10°, gamma 0.9-1.1.

*  Avoid: strong blur/sharpen or aggressive color shifts that might mask enamel discoloration or mucosal erythema
[3,24,25].
(C) CBCT volumes and CBCT«IOS fusion
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*  Resampling & geometry: isotropic resampling to a clinically appropriate voxel size before augmentation; small 3D
rotations =+5-10° and scale =+5% only.

e Intensity handling: site/scanner harmonization; if metal-artifact reduction (MAR) is used, document parameters
and audit downstream impact because MAR changes intensity statistics.

e Fusion: enforce QA for CBCT«+IOS registration and report alignment metrics/failure modes [23,24].
(D) Detection and segmentation heads
e  Sampling: class- and ROI-balanced crops/patches to counter foreground sparsity (anchors/proposals).

*  Deformations: small affine/elastic only; avoid shape warps that would invalidate measurement tasks (e.g.,
bone-loss staging).

*  Loss coupling: use Focal Loss for detection, and Generalized Dice or Focal-Tversky for imbalanced/small masks in
segmentation [17-19].

(E) Mix-based regularizers (use sparingly)

e MixUp/CutMix: helpful on small, heterogeneous cohorts to stabilize decision boundaries; keep strengths modest
(typical a=0.2-0.4; CutMix probability <0.2) so you don’t wash out faint signals [15,16,21]

¢ CoarseDropout: a single small hole (<24-32 px in 2D) at low probability to encourage robustness without erasing
key anatomy.

Reporting, calibration, and safeguards

*  Qualitative verification: include a montage of augmented samples per modality (in the supplement) to visually
confirm plausibility;
*  Ablations: report no-aug vs proposed-aug; under class imbalance, include PR-AUC alongside ROC-AUC, and

report sensitivity/PPV at pre-specified specificity (e.g., 20.90) with 95% ClIs [7,27];
¢ Calibration: augmentation may cut variance but does not guarantee calibrated probabilities; apply temperature

scaling and report reliability diagrams/ECE before fixing clinical thresholds| 20].

Take-home: Prefer small, physics-respecting transforms tuned to each modality and task. For radiographs, em-
phasize conservative contrast and minimal geometry; for RGB, stabilize color; for CBCT, prioritize
resampling/harmonization and registration QA. Couple these recipes with imbalance-aware losses, calibration, and
transparent reporting to achieve clinically meaningful, reproducible gains[37].

2.55 Choosing encoders and heads — practical guidance

Selecting a backbone and prediction head should reflect the task (classification, detection, segmentation), dataset
scale/imbalance, and deployment constraints. The checklist below summarizes pragmatic defaults and reporting prac-
tices.
Pick the backbone/head to match task, data scale/imbalance, and deployment limits.

e Small, imbalanced datasets: ResNet-50, DenseNet-121, or EfficientNet-B0/B3; class-aware training (class weights or
Focal) with mild label smoothing; avoid double-weighting; calibrate with temperature scaling; report PR-AUC and
sensitivity/PPV at fixed specificity (=0.90) with 95% Cls; include a small external test when available [27,32, 20].

e Wide-field OPG: InceptionV3, ConvNeXt, or Swin with detection/segmentation heads; many tasks are mul-
ti-label —use BCE/Focal-BCE and report mAP/AP and macro-F1; measure throughput and batch-1 latency at clin-
ical resolution [31,34,5].

e Subtle, small, low-contrast lesions: segmentation or Seg—Cls; consider Focal-Tversky/unified-focal; gentle CLAHE
can help—quantify on validation [18,25].

e Edge (chairside): efficient backbones (EfficientNet-B0/B3 or compact variants); plan pruning and INT8 quantiza-
tion; profile batch-1 latency/memory/power; assess calibration (ECE) before locking thresholds [32, 20].

e 3D CBCT & fusion: Swin or hybrid pyramids feeding 3D/2.5D segmenters; document MAR, intensity harmoniza-
tion, and resampling; validate registration (TRE, HD95/Chamfer) and report timing/memory [23, 26].
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Reporting & calibration (all): Compute ECE with reliability diagrams; fix thresholds on validation, then report
sensitivity/PPV (or mAP for detection, Dice/IoU for segmentation) with 95% Cls on internal/external tests. Include
runtime, memory, and —when relevant —energy at clinical resolution [20,41].

Table 3. Encoder families — core idea, strengths/limits, typical dental fit, key refs.
Family Core idea Strengths Limitations Typical dental fit Key
refs
ResNet-50 Residual skips  Stable transfer, Can overfit Periapical/OPG classi-  [27]
robust small cohorts fiers & detectors
DenseNet-121 Dense reuse Param-efficient Activation Radiographs with lim-  [30]
memory ited data
InceptionV3/Xception Factorized Multi-scale context  Prefers 22992 Wide-field OPG [31,32]
convs inputs
EfficientNet-B0/B3 Compound Strong Larger variants RGB/ periapical, [33,34]
scaling acc-efficiency need care screening
Mobile-friendly Inverted re- Edge laten- Capacity limits =~ Chairside/handheld [32]
CNNs siduals cy/power
ConvNeXt/RegNet Modern conv  Transformer-level Check batch-1 OPG multi-finding  [34-36]
design acc. latency
ViT/Swin Self-attention Global context Data/pretrain  OPG/3D; detection/seg  [4,5]
hungry
Table 4. Task heads and when to use them.
Head Output Prefer Pros Cons Dental use Refs
when...
Classifier = Image/ROI label Screening/ Simple,fast Nolocaliza- RGB multi-label; [7,28]
tion OPG screening,.
Detector Boxes + scores Focallesions/ Localizes Misses shape Caries/periapicalon [37]
triage BW/PA.
Segmenter Pixel/voxel mask Geometry / Precise ex- Annotation  Bone loss; lesion [19,18]
staging tent cost masks.
Seg—Cls Mask—features—class Small / Boosts sen- Two-stage Periapical radiolu- [9,12]
low-contrast  sitivity cencies.
DETR-style Set of objects Fewer priors Cleande-  Data-hungry OPG multi-finding [39]
sign

2.6 Class Imbalance and Probability Calibration

Why imbalance matters: Dental datasets are typically skewed (many healthy/mild cases, fewer severe or rare

conditions). Under skew, models can look “good” on accuracy while failing to detect minority classes. Two levers are
used together: (A) data-level rebalancing and (B) loss-/threshold-level reweighting.

(A) Data-level rebalancing:

e  Stratified k-fold and patient-level splits keep prevalence consistent and prevent leakage across views of the same

subject;

e  C(Class-aware sampling / minority oversampling paired with stronger augmentation for rare classes (e.g., MixUp,

CutMix, careful photometric/affine; Albumentations) helps reduce variance without memorizing artifacts;

e  For detection/segmentation, hard-example mining and patch/ROI balancing reduce anchor/foreground sparsity.
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(B) Losses, smoothing, and thresholds:

e Class-weighted CE or Focal for skewed classification; Focal-Tversky/Generalized Dice for tiny/sparse masks; mild

label smoothing can temper over-confidence on small, heterogeneous sets [17-19].

e Fix operating thresholds on the validation set, then report sensitivity and PPV at a pre-specified specificity (e.g., >
0.90) with 95% confidence intervals [41].

Calibration for decision-useful probabilities: Neural networks are often miscalibrated (over-confident). Temper-
ature scaling is a simple, effective post-hoc method to reduce ECE, and reliability diagrams plus the Brier score com-

municate probability trustworthiness. For safety-critical use, adopt selective prediction (abstain under low confidence)

to trade coverage for risk [20,40].

Table 5. Class-imbalance remedies at a glance.

Lever What it does Prefer when... Caveats Refs
Class- li Risk of fitti
a.ss a.w are SampHNE 1 creases rare-class ex-  Severe skew; small da- 1.s Ot overtitting
/ minority over- without strong aug- [21,38]
. posure per epoch tasets .
sampling mentation
. . . Regularizes decision .. . Tune mix ratios; pre-

MixUp / CutMix (with boundary; combats label Limited labels; hetero- serve faint radiolucen- [15,16,21]
standard aug) . geneous capture .

noise cies on X-ray
Class-weighted CE Penalizes minority errors A.my skew; simple base- Canstill I?e [17]

more line over-confident

Down-weights easy neg- . .
Focal Loss (cls.) atives; focuses on hard DeteC‘tIOI‘l/CIS. withmany  Tune y and a; watch [17]

i negatives convergence

positives

Unified-Focal / Fo- Emphasizes small/sparse Tiny lesions; bone-loss = Balance with Dice/CE
o1 [18,19]
cal-Tversky (seg.) masks edges for stability
. Reduces . . Small/heterogeneous Too much can blur
Label smoothing over-confidence, noise S [30]
. labels minority signals

sensitivity
Thresholds at fixed Clinically aligned opera- Screening/triage work-  Must be set on valida- [41]
specificity tion flows tion, then locked
Eeclgperature scaling + Calibrates probabilities Before deployment ?;.-ft:;ne if distribution [20]

i

2.7 Explainability and Multimodal Fusion
Explainability (XAI): what it is—and is not. Post-hoc methods help clinicians judge plausibility (did the model

look at the right place?) and curate error galleries; they do not guarantee correctness. Use multiple views and sanity

checks, and interpret XAl alongside metrics and external validation [41-43]

Figure 4 illustrates the Grad-CAM pipeline used in this review—covering target-layer selection, heat-map com-

putation, and upsampling/overlay —and serves as a reference for the plausibility panels reported later.
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Grad-CAM pipeline for dental
lesion classification
@ input

@ select target layer
& compute Grad-CAM

I s

Iow importance high

@ upsample & overlay © heatmap

Figure 4. Schematic of the Grad-CAM workflow used in this review: (1) select the target convolutional layer; (2) compute
class-discriminative gradients and weight the feature maps; (3) upsample and overlay the heat map on the input image for
clinician-readable plausibility checks [43].

1.  Common tools:

e  Grad-CAM: fast class-discriminative heatmaps—good for plausibility overlays and quick QA; layer-dependent
and resolution-limited [41];

e Integrated Gradients: axiomatic attributions; useful for aggregated trends; sensitive to baseline choice[42];

e  SHAP: consistent feature contributions; informative cohort-level analysis; computationally heavier[43]

Table 6. Popular XAI methods.
Method Strengths Limitations Dental use cases Refs
L lution de- Lesion plausibility; fail
Grad-CAM Fast, intuitive overlays ayer/resolution de eol o Pranistariy, faltre [41]
pendent analysis panels

Integrated Gra- Baseline choi i-

r} eprated b Axiomatic, path integrated ‘as.e e chotee senst Aggregate attribution trends [42]

dients tivity

SHAP Cf)nsiistent local—global con- Compute cost Cohort-leveTl factor analysis, (43]

tributions reader studies

2. Multimodal fusion (OPG/PA/CBCT-10S): Early fusion (with reliable registration) exploits complementary cues;
late/attention fusion is safer when modalities are heterogeneous or missing. For CBCT-IOS, enforce registration
QA, isotropic resampling, and intensity harmonization; if MAR is applied, document potential intensity shifts and
audit downstream bias [23,26]. Include ablations vs. single-modality baselines and report site/scanner-wise results
[27].

2.8  Evaluation and Reporting

2.8.1 Data splits and leakage prevention

Use patient-level splits with site/scanner stratification; never allow multiple images from the same patient to cross

train/validation/test. Include at least one external test cohort to quantify distribution shift [27].

2.82 Metrics under class imbalance

Classifiers: ROC-AUC + PR-AUC; per-class precision/recall/F1; report sensitivity/PPV at a fixed specificity (e.g., >
0.90) with 95% CIs[40];

Detectors: AP/mAP at relevant IoU thresholds; baselines include Faster R-CNN and DETR; see dental exemplars
in §3 and Table 7 [37,39];

Segmenters: Dice and IoU, with small-structure analyses (e.g., per-tooth bone-loss edges) [18,19];
Calibration: reliability diagrams, ECE, optionally Brier; apply temperature scaling before fixing thresholds [20].

2.83 Statistical testing and uncertainty
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Use patient-level bootstrapping to derive confidence intervals (Cls) and paired tests for matched designs. Quan-
tify predictive uncertainty —e.g., Monte-Carlo Dropout —to enable selective prediction and risk—coverage analyses, so
low-confidence cases can be flagged or deferred [44].

Generalization and shift robustness:

Report site-wise performance and cross-site deltas. When target labels are unavailable, benchmark unsupervised do-
main adaptation (DANN; Deep CORAL)[45] and test-time adaptation (TENT) as robustness baselines [46],[[47].
Document any preprocessing that alters intensity statistics—such as metal-artifact reduction (MAR) in CBCT—and
analyze downstream impact [26].

2.84 Computational efficiency and deployment artifacts.

Provide batch-1 latency and memory footprint on intended hardware, plus throughput at clinical resolution. Re-
lease structured outputs (DICOM-SR/JSON) and frozen thresholds for audits and PACS/RIS integration.

2.85 Ethics, privacy, and fairness (brief).

Favor multi-site collaboration —including federated training —to expand diversity without centralizing PHI, and
preserve site-level audit trails to enable accountability. When privacy-enhancing technologies are used, report formal
parameters (e.g., (&,0)(\varepsilon,\delta)(e,0) for differential privacy) alongside the measurable utility impact at
clinically relevant operating points. Finally, publish subgroup audits (age/sex/device/site) and probe for shortcut
learning (e.g., acquisition markers, metal artifacts) to ensure equitable and robust performance across populations.

3. Literature Review and Critical Analysis

This review synthesizes evidence by modality (intraoral RGB; panoramic radiography OPG/DPR; periap-
ical/bitewing; 3D CBCT and CBCT-IOS fusion) and by task design (classification, detection, segmentation, Seg—Cls).
We prioritize studies reporting explicit metrics and clinically interpretable operating points, with thresholds
pre-specified on validation and results summarized at those operating points (e.g., specificity 2 0.90 with sensitivi-
ty/PPV and 95% Cls) per contemporary reporting guidance [40].

3.1  Intraoral RGB (screening, grading, tele-dentistry)

Across standardized photo capture, multi-label screening and targeted grading are consistently feasible. Prepro-
cessing typically combines white-balance or color constancy with bounded photometric jitter and ROI-centric crops.
Mix-style regularizers appear when labels are limited. Lightweight backbones dominate for accuracy—efficiency, and
several works add saliency to aid plausibility review.

Representative evidence includes early gingivitis detection from intraoral photos using CNN/detector pipelines
[12], broad multi-label screening at the image level with explicit macro-F1/PR-AUC reporting [11], and condi-
tion-specific grading of tooth wear with high agreement [73].

Further, lightweight ensembles (VGG/MobileNet/Inception) achieve strong internal accuracy at low latency [78],
while fuzzy rank-based ensembles with uncertainty targeting heterogeneous capture report robust performance on
public sets [79]. Chairside-oriented MobileNetV2 models augmented with Grad-CAM illustrate edge-efficient infer-
ence and clinician-readable overlays [83]. A comparative transfer-learning benchmark focused on dental disease clas-
sification helps position backbone trade-offs specifically for RGB tasks [48].Representative RGB studies and their key
outcomes are summarized in Table 7.

3.2 Panoramic radiographs (OPG/DPR): multi-finding screening and staging

OPG offers jaw-wide context but is sensitive to magnification and overlap. Baseline screeners underscore the
value of careful grayscale normalization and multi-scale context [6]. Staging studies align predictions to clinical defi-
nitions and increasingly emphasize calibrated operating points and external cohorts as the logical next step [10],[18].
Architecturally, modern convnets (e.g., ConvNeXt) and attention models (e.g., Swin) capture long-range structure at
higher input resolutions; hybrid CNN+ViT approaches also appear with confidence estimation to support thresholding
and triage workflows [54]. Pediatric OPG work explores age-aware modeling and highlights cross-site shift as a key
limitation [82]. Methods that pair deep CNN features with classical classifiers (e.g., SVM) can deliver high agreement
when labels are limited, albeit with two-stage complexity [53]. Broadly, reported results suggest competitive AUC/F1
on internal cohorts, with backbone and resolution choices materially influencing performance [13].see Table 7.
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3.3 Periapical/bitewing radiographs: detection and Seg—Cls

Foundational pipelines established feasibility for tooth detection/numbering on periapical radiographs, providing
reference baselines and mAP by tooth index [56][49]. For lesions, instance/semantic segmentation —alone or as a
front-end to a final classifier (Seg—Cls)—consistently improves sensitivity to small, low-contrast targets relative to
detection-only approaches, at increased annotation cost [57],[58]. Modern convnets trained with gentle radiograph
augmentation preserve faint radiolucencies and yield competitive AUC/PR-AUC, while emphasizing the need for
cross-site testing [50].

3.4 3D CBCT and CBCT-IOS fusion

CBCT contributes volumetric tooth—bone detail; IOS adds accurate surface geometry. Fusion improves anatom-
ical completeness when registration QA and intensity harmonization are enforced, with studies reporting higher
planning accuracy versus single-modality inputs [13]. Metal-artifact reduction (MAR) enhances visibility yet can alter
intensity statistics; both parameters and downstream effects should be documented and audited [26]. Cross-cutting
methods: imbalance, calibration, and explainability.

3.5 Cross-cutting observations

Across modalities, three patterns recur. First, conservative, modality-aware preprocessing (normalization for
OPG; color stabilization for RGB) supports stable training and plausible overlays [6],[11],[83]. Second, segmentation or
Seg—Cls tends to boost sensitivity for subtle, small targets in periapical tasks, with dataset resources emerging to
standardize comparison and reporting [57], [51]. Third, hybrid or attention-augmented encoders help capture
long-range context in OPG; several groups pair these with confidence measures to aid threshold selection and reader

workflows [54],[82]. External, cross-site validation remains the main limitation cited across studies.
Table7. Representative recent studies (abridged, organized by modality).
Modali- Study Problem & design Key contribution Limitations/notes Results (brief)
ty
RGB Alalharit  Gingivitis detection = Standardized capture Needs imbalance AUC/Acc. im-
hetal, from intraoral photos +ROI improves handling & calibra-  proved vs. naive
2020[12] (CNN/detector) grading/detection tion preprocessing
RGB Park et Multi-label intraoral Feasible broad Heterogeneous cap- Mac-
al., 2022 photo screening screening on RGB ture; threshold ef- ro-F1/PR-AUC
[11] fects reported; PPV
depends on
threshold.
RGB Pang et Tooth-wear grading Sensitive to subtle  Single condition; not High x and
al., 2025 (CNN) enamel wear; clini- multi-condition grading agree-
[73] cally aligned grading ment.

RGB Hussain Lightweight ensemble = High accuracy with  Depends on ensem-  Acc.>90% (in-
etal, (VGG/MobileNet/Incep low-latency models ble policy; shift risk  ternal); low la-

2023 [78] tion) tency.

RGB Razmjou Fuzzyrank-baseden-  Robust fusionunder Ensemble inference Acc.~91-97% on
eietal., semble + uncertainty heterogeneity overhead public sets.
2025 [79]

RGB Taskin, MobileNetV2 + Chairside-efficient Backbone capacity Acc.>85%
2024 [83] Grad-CAM (edge) with saliency maps limits (task-specific).

RGB Ikhwani  Comparative transfer Side-by-side back- Dataset diversi- Competitive

etal., learning for dental dis- bone benchmarking ty/standardization accuracy across

2024 [48] ease classification for RGB tasks TL backbones.

OPG Zhu et OPG multi-disease Normalization + mul- Limited interpreta- Competitive
al., 2023 CNN ti-scale context bility reporting AUCs (internal).

[6]
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OoPG

orG

orG

orG

orG
Periap-

ical
Periap-

ical

Periap-
ical

Periap-
ical

3D/Fusi
on

3D/Fusi
on

Almalki
et al.
(2022)
[13]

Hsieh &
Cheng,
2024 [53]
Li (2025);
Shon
(2022)
[10], [18]
Parkhi et
al,, 2025
[54]
Pham,
2025 [82]

Chen et
al., 2019
56]
Fatima

etal,,
2023 [57]

Thalji et
al., 2024
[51]

Liu et
al., 2024
[50]

Hegazy
etal.,
2023 [26]
Liu et
al., 2023
[13]

OPG model benchmark

CNN features + SVM
on OPG

Periodontitis staging on
OPG
CNN+ViT with confi-

dence on OPG

Pediatric OPG trans-
formers

Tooth detec-
tion/numbering

Instance segmentation
of periapical lesions

Segmented periapical
dataset

Periapical lesion detec-
tion with ConvNeXt

CBCT MAR

Deep CBCT<IOS fu-
sion

Baselines; effect of
preprocessing

High x with limited
labels

Clinically aligned
outcomes

Calibrated lo-
cal+global features

Age-aware modeling

Foundational detec-
tion pipeline

Masks improve sen-
sitivity for
small/low-contrast
lesions
Resource for fair
compari-
sons/standardized
reporting
Modern convs + gen-
tle augmentation

Artifact reduction
improves inputs

Better anatomical
completeness

Dataset variability

Two-stage complex-
ity
Geometry sensitivi-
ty; calibration need-

ed

External cohorts
pending

Cross-site shift

Older backbones

Annotation cost

Label distribution
skew

Needs cross-site
testing

MAR side effects to
track

Registration QA
mandatory

Back-
bone/resolution
materially affect
AUC/F1.

Kk >0.8 (internal
split).

Stage-wise F1/x;
sensitivity at set
specificity.

AUC/PR-AUC
improved vs.
CNN-only
AUC stable
within site;
drops cross-site.
mAP per-tooth
numbering re-
ported.
Higher
small-lesion re-
call vs. detec-
tion-only.
Enables stand-
ardized
IoU/Dice.

Competitive
AUC/PR-AUG;
preserves faint

lesions.
Improved SNR
and downstream
accuracy
Higher planning
accuracy vs. sin-
gle modality

Abbreviations: AUC = area under the ROC curve; PR-AUC = area under the precision-recall curve; PPV = positive predictive value; k

= Cohen’s kappa; mAP = mean average precision; IoU = intersection over union; ECE = expected calibration error; SNR = sig-

nal-to-noise ratio; TL = transfer learning,.

4. Discussion and Model Analysis

In this section, we translate the literature synthesis into practical design guidance. We begin with backbone fami-
lies and their trade-offs (§4.1), then map clinical questions to task heads (§4.2), formalize operation under class imbal-
ance and probability calibration (§4.3-§4.4), and close with engineering considerations for deployment (§4.5).

4.1  Backbone families: practical trade-offs

e  ResNet-50 / DenseNet-121. Reliable defaults for radiographs and RGB under constrained data; calibrate predic-
tions to mitigate over-confidence on single-center cohorts [27,28].
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e  EfficientNet-B0/B3, MobileNetV2/V3. Strong accuracy—efficiency for chairside/edge use; report ECE and apply
temperature scaling before fixing thresholds [32,20]

e ConvNeXt /Inception / Swin. Favor when long-range, multi-scale context is essential (OPG, multi-finding). Check
batch-1 latency and memory footprint at clinical resolution [34,30]

e  ViT. Powerful global context with large-scale pretraining, hybrids or Swin often prove more data-efficient in
medical imaging [4].
Takeaway: Start conv-first for limited data or edge constraints; escalate to Swin/hybrids for large-FOV OPG or 3D

contexts when compute and data allow. A side-by-side of backbone families, data needs, and dental fit is provided in
Table 8.

4.2 Task heads vs. clinical questions

e  (lassification: best for screening; requires calibrated thresholds and a clear intended use (triage vs. confirmatory)
[20].

e Detection: localizes focal findings (e.g., proximal caries). Use Focal Loss for class/anchor imbalance [17].

e Segmentation: needed when geometry/staging matters (bone loss, lesion extent); report Dice/IoU and
small-structure analyses [18,19].

o Seg—Cls (segmentation-assisted classification): two-stage (masks — region features — class) that improves sensi-
tivity to small, low-contrast lesions and enables plausibility overlays; the workflow is illustrated in Figure 3.
Trade-offs are extra annotation and two-stage complexity [9,12].

¢  DETR-style: cleaner priors with end-to-end set prediction, but typically more data-hungry and slower to converge

[39].

To turn these principles into quick, actionable choices, Table 8 provides a concise map that links each clinical
question to the most suitable head (Classifier / Detector / Segmenter / Seg—Cls / DETR-style), detailing outputs, pre-
ferred use cases, key pros/cons, typical dental applications, and practical notes (e.g., calibration, class-imbalance han-
dling). Read Table 8 alongside Figure 3 and report under imbalance with PR-AUC in addition to ROC-AUC, evaluated
at a pre-specified specificity (e.g., 20.90) with sensitivity, PPV, and 95% Cls.

Table 8. Task heads: output, when to prefer, pros/cons, and typical dental use
(Families are representative, not exhaustive. Select according to data scale, resolution, and deployment constraints.)

Typical dental

Head Output Prefer when... Pros Cons use Notes
. Image/region Screening; global Simple; ) RGB multi-label; Calibrate
Classifier labeély, ¥ status v fastp Nolocation OPG screening  thresholds
Detector Boxes + Focal lesions; tri-  Localizes Misses Caries/periapical Focalloss helps
scores age findings  shape cues on BW/PA  [17]
Segmenter Pixel/voxel Geometry/staging Precise Annotation  Bone loss; peri-  Report
mask needed extent cost apical masks Dice/IoU[18,19]
Seg—Cls Mask fea- Small/low-contrast Boosts Two-stage Periapical radi- Good for sub-
tures — class lesions sensitivity complexity  olucencies tle cues [9,12]
DETR-style Set of objects En.d-to-end, fewer C.lean de- Data-hungry P.an.ora.mic mul- Longer training
priors sign ti-finding [39]

Metrics note. For detection, add AP/mAP alongside PR-AUC; for classifiers, report PR-AUC and sensitivity/PPV at pre-specified
specificity.

4.3 Imbalance, thresholds, and calibration

Under skew, we recommend treating PR-AUC as mandatory alongside ROC-AUC and pre-specifying a fixed
specificity (e.g., 2 0.90) with sensitivity/PPV and 95% ClIs, following TRIPOD+AI and standard imbalanced-data prac-
tice [27,35]. Temperature scaling and reliability diagrams (ECE) turn scores into decision-useful probabilities [20]. For
safety, adopt selective prediction to abstain on low-confidence cases [41].
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4.4  Interpretability and reader workflow

Grad-CAM overlays guide plausibility checks and error curation; IG/SHAP add cohort-level insigh . Prospective
reader studies are still sparse, but XAl panels are routinely requested by clinicians and can shorten adjudication in
discordant cases when presented with structured summaries (per-tooth/per-region outputs) [42-44].

4.5 Engineering for deployment

Clinical viability requires disciplined engineering: pinned seeds/packages; saved configs; export to
ONNX/TensorRT with FP16/INT8 as appropriate; batch-1 latency and memory footprint on target hardware; struc-
tured outputs (DICOM-SR/JSON); model cards and a fail-closed/abstention policy [27][52]

5. Challenges

This section consolidates the principal barriers to reliable dental Al —data/label quality, class imbalance, domain
shift, multimodal fusion, calibration/uncertainty, and clinician-usable explainability —and frames concrete safeguards
for each.

5.1 Data scarcity, label quality, and governance

Multi-site, diverse datasets remain rare; label noise (e.g., subtle proximal caries) is common. Best practice: pa-
tient-level splits, site/scanner stratification, >2 expert readers with blinded re-reads, and a clear hierarchical taxonomy;
report k for agreement [27].

5.2 Class imbalance and clinically aligned operation

Imbalance is the norm in dental imaging: Combine data-level remedies (minority oversampling + stronger aug-
mentation) with loss-level choices (class-weighted CE, Focal Loss, and Unified Focal Loss for segmentation) [39]. Be-
cause clinical adoption hinges on specificity-constrained operation, thresholds must be pre-specified on validation data
(e.g., specificity = 0.90) and results reported at those thresholds (sensitivity and PPV with 95% ClIs), not only overall
AUCs [17-19,35].

5.3  Domain shift and cross-site generalization

Cross-site performance often drops due to device/protocol differences. Include external cohorts and site-wise re-
porting; benchmark domain adaptation and test-time adaptation baselines (DANN, Deep CORAL, TENT) [46,43,47].
For CBCT, disclose MAR and its effect on intensity statistics [26].

5.4 Multimodal fusion pitfalls
Fusion helps only with accurate registration and harmonized inputs. Enforce registration QA; analyze miss-
ing-modality scenarios; ablate against single-modality baselines [30,42].

5.5  Calibration, uncertainty, and selective prediction
Modern networks are over-confident; apply temperature scaling; quantify ECE; explore ensembles or
MC-dropout to enable risk-coverage curves and abstention [34,44].

5.6 Explainability that clinicians can use

Grad-CAM, Integrated Gradients, and SHAP assist plausibility checks and error triage but are not proof of cor-
rectness [36-38,71,44]. Reader-friendly panels should align saliency with known radiologic signs and surface shortcut
cues (acquisition markers, metal artifacts).

5.7  Reproducibility and reporting
Follow TRIPOD+ALI: transparent splits; internal/external results; ROC-/PR-AUC; per-class precision/recall/F1; k;
Dice/IoU; calibration plots; 95% Cls; DeLong for correlated AUCs; decision thresholds; latency/memory [27,69].

5.8  Privacy, fairness, and auditing
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Federated learning requires audit trails (data curation, update logs, fairness checks); if using differential privacy,

report (¢, d) and the utility trade-off (e.g., APR-AUC at fixed specificity). Publish subgroup metrics (age/sex/device/site)
and discuss shortcut risks [67,68,70,44].

6.

7.1

7.2

7.3

7.4

Future Directions

Label-efficient learning at scale. Combine self-supervised pretraining with semi/weak supervision to reduce an-
notation burden while improving recall and calibration across modalities [63].

Routine shift-robustness. Make domain adaptation (DANN/Deep CORAL) and test-time adaptation (TENT)
standard baselines; always include site-wise deltas on external cohorts [64,72,74].

Calibration-first pipelines. Treat calibration and uncertainty as first-class outcomes — publish reliability dia-
grams/ECE, Brier, and define abstention policies tuned on validation [34].

Clinically usable fusion. Standardize CBCT+IOS protocols (registration QA metrics, harmonization) and docu-
ment MAR side-effects; evaluate against robust single-modality baselines [30,31,42].

Reader/workflow studies. Move beyond retrospective metrics to prospective, multi-center reader studies tracking
time-to-decision, discordant-case triage, and the utility of XAI overlays [44,70].

Privacy-preserving collaboration with auditing. Develop federated frameworks with verifiable site-level audits
(quality, fairness, drift) and quantify DP trade-offs on sensitivity at fixed specificity [67,68].

Decision rules under constraints. Provide practical “when-to-use-what” guidance (conv vs. transformer; classifier
vs. detector vs. segmentation vs. Seg—Cls) keyed to data scale, lesion size/contrast, FOV, and latency/memory
budgets (§§2.5, 4).

Recommendations (Actionable Checklist)

In summary, we recommend:

Data & labeling
Split at the patient level, stratify by site/scanner; include > 1 external cohort [27,44];

Publish a labeling protocol (taxonomy + decision rules) and an adjudication flow (=2 experts; #10% blinded
re-reads); report inter-rater x;

When dense masks are costly, combine self-supervised pretraining with semi/weak supervision rather than
shrinking scope.

Objectives & metrics
Treat PR-AUC as mandatory alongside ROC-AUC for imbalanced problems.

Pre-specify thresholds on validation (e.g., specificity = 0.90), then report sensitivity and PPV with 95% CIs at those
fixed thresholds on internal and external tests.

Use task-appropriate metrics: mAP/AP (detection), Dice/IoU (segmentation), and per-class precision/recall/F1
(classification).

Calibration & uncertainty
Apply temperature scaling (or isotonic) and publish reliability diagrams with ECE (optionally Brier).

Define a selective-prediction policy (when to abstain) and quantify the risk—-coverage trade-off.

Shift robustness

Provide site-wise performance and cross-site deltas; where relevant, add domain adaptation or test-time adapta-
tion baselines.
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e  For CBCT, document MAR usage and intensity harmonization and analyze their impact.

7.5 Backbones & heads (fit to constraints)
e Choose encoders/heads by data scale, lesion size/contrast, resolution, and latency/memory budget (see §4 tables).

e  Prefer Seg—Cls when small, low-contrast lesions are clinically critical.

7.6 Explainability (XAI)

e  Provide clinician-readable panels (Grad-CAM / Integrated Gradients / SHAP), sanity checks, and failure galleries
linking saliency to recognized radiologic signs.

7.7 Engineering & deployment

e  Report batch-1 latency, memory footprint, and throughput at clinical resolution on target hardware.

e Emit structured outputs (DICOM-SR/JSON) with per-tooth/per-region fields to ease PACS/RIS integration.

e  Release model cards (intended use, cohorts, thresholds, limitations) and document fail-closed/abstention behav-
ior.

e  Pin seeds/packages, track configs; export for inference (ONNX/TensorRT; consider FP16/INTS).

7.8  Privacy & fairness
e Infederated settings, define who audits site contributions, fairness, and drift; publish audit summaries.

e  If using differential privacy, report £/0 and the performance impact at fixed specificity.

7.9 Reproducibility & transparency (add)

e  Provide code and exact configs, dataset split manifests, and versioned model artifacts sufficient for third-party
replication.

e  Align reporting with TRIPOD+AI items (checklist in supplement).

7.10 Post-deployment monitoring (add)

e  Establish a plan for monitoring calibration and performance drift, periodic re-calibration, and subgroup audits;
log abstentions and clinician overrides.

7.11 Practical deployment rule

If, after calibration, specificity-constrained targets on an external cohort are not achieved, the model must be de-
ployed only as a second reader with selective abstention —never as an autonomous gatekeeper. Promotion to auton-
omous use should occur only after the model meets and sustains those externally validated, specificity-constrained
targets under post-deployment monitoring.

8. Conclusion

This review synthesizes DL methods for assessing dental anomalies and diseases across intraoral RGB, BW/PA
radiographs, panoramic OPG, and 3D CBCT/IOS, emphasizing modality-aware preprocessing, imbalance-aware ob-
jectives, and calibration as prerequisites for decision-useful Al. Compared with prior surveys, we center clinically
constrained operation —pre-specified, high-specificity thresholds with calibrated probabilities and selective absten-
tion—alongside engineering artifacts (latency, memory) and structured outputs for integration. Persistent gaps include
small single-center datasets, limited cross-site robustness, under-reported calibration/uncertainty, and scarce prospec-
tive reader/workflow studies. Moving forward, label-efficient learning, routine shift-robustness baselines, and feder-
ated, auditable collaboration are essential. Critically, site-stratified external validation should be a gating criterion be-
fore deployment. With these guardrails, dental Al can progress from retrospective promise to dependable, safe-
ty-preserving and workload-reducing support that augments —rather than replaces—expert judgment.
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