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Abstract 10

Oral anomalies and dental diseases affect billions of people worldwide, yet diagnosis 11

often relies on manual interpretation of radiographs and clinical images, which is 12

time-consuming and prone to variability. Advances in deep learning (DL) have opened 13

new opportunities for accurate, efficient, and scalable dental diagnostics. This review 14

examines state-of-the-art DL frameworks applied to dental imaging modalities, including 15

intraoral RGB photographs, bitewing and periapical radiographs, panoramic radiog- 16

raphy, and cone-beam computed tomography (CBCT). The analysis covers preprocessing 17

pipelines, backbone architectures (convolutional neural networks and vision transform- 18

ers), task designs (classification, detection, segmentation, hybrid models), and strategies 19

for addressing data imbalance, calibration, and uncertainty. Findings reveal that modal- 20

ity-specific preprocessing enhances reliability, hybrid CNN-Transformer models im- 21

prove performance for wide-field or complex tasks, and segmentation-assisted classifi- 22

cation increases sensitivity to subtle lesions. Moreover, calibrated probability outputs, 23

robust evaluation metrics (ROC-AUC, PR-AUC), and external validation are essential for 24

clinical readiness. The review identifies critical gaps—limited cross-site generalization, 25

under-reported calibration, and scarce real-world validation—and outlines future direc- 26

tions such as label-efficient learning, federated training, and calibration-first pipelines. 27

With these safeguards, DL-based systems can evolve from experimental tools to trust- 28

worthy clinical aids that strengthen diagnostic accuracy and decision support in dentis- 29

try.  30

Keywords: Dental imaging; deep learning; convolutional neural networks (CNNs); vi- 31

sion transformers (ViT); Class imbalance; probability calibration. 32

1. Introduction 33

34

Oral and dental health is a vital component of overall well-being, yet dental anomalies and oral diseases remain 35

among the most prevalent chronic conditions worldwide. Approximately 3.5 billion people are affected, with the 36

burden driven primarily by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion) [1,2]. When un- 37

treated, these conditions lead to pain, infection, tooth loss, and systemic complications that impair nutrition, speech, 38

and quality of life; the burden is amplified in low- and middle-income countries where preventive services and ad- 39

vanced diagnostics are limited [1]. Traditional diagnosis relies on clinical assessment and manual interpretation of 40
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radiographs, which is time-consuming, subjective, and prone to inter-observer variability; overlapping anatomy, im- 41 

age noise, and early lesions further complicate detection[3]. 42 

Against this backdrop, artificial intelligence (AI)—particularly deep learning (DL)—has accelerated progress in 43 

medical image analysis, including transformer-based vision models such as ViT and Swin that capture long-range 44 

context [4,5]. In dentistry, preliminary work demonstrates AI on panoramic radiographs for multi-condition screening 45 

[6],while broader surveys of medical imaging emphasize scalable, data-efficient pipelines that transfer to clinical tasks 46 

[7,8].The evidence base spans panoramic staging/measurement on OPG [9,10], multi-label screening from intraoral 47 

RGB photographs [11,12], and three-dimensional analyses using CBCT and CBCT–IOS fusion to enrich anatomical 48 

context [13,14]. Persistent methodological gaps remain [7] highlights the need for transparent intended-use claims, 49 

external testing, and pre-specified operating points, alongside evaluation under class imbalance where PR-AUC com- 50 

plements ROC-AUC to reflect clinically meaningful decision thresholds[7]. 51 

Gap and novelty: Previous reviews have not consistently addressed probability calibration, explainability, and 52 

deployment readiness across all major dental imaging modalities. This review targets that gap by integrating: (i) mo- 53 

dality-aware preprocessing and class-imbalance remedies; (ii) calibrated, threshold-ready probabilities (ECE, reliability 54 

diagrams) reported at clinically constrained operating points; and (iii) deployment artifacts (latency, memory footprint, 55 

structured outputs) together with external, site-stratified validation aligned with contemporary reporting guidance. 56 

Objectives: This review aims to: 57 

1. compare CNN and transformer frameworks across dental modalities and tasks. 58 

2. consolidate imbalance-aware objectives and calibration metrics (PR-AUC, Cohen’s κ, ECE, reliability diagrams) 59 

with clinically meaningful operating points. 60 

3. Summarize deployment and reporting practices, including external validation, efficiency reporting, and integra- 61 

tion into clinical systems. 62 

Organization of the paper :Section 2 provides background and the theoretical framework; Section 3 reviews the 63 

literature by modality and task; Section 4 analyzes model choices and trade-offs; Section 5 outlines challenges; Section 6 64 

describes future directions; Section 7 presents actionable recommendations; and Section 8 concludes.  65 

2. Background and Theoretical Framework 66 

2.1 Machine Learning (ML): a concise orientation 67 

Machine learning (ML)  studies algorithms that improve at a task through experience (data) rather than 68 

hand-written rules. Instead of prescribing decision logic, we provide examples and let the model infer patterns that 69 

map inputs to outputs. 70 

Core idea: ML assumes useful regularities exist in the data and seeks to approximate the unknown function that 71 

generated them. The central challenge is generalization—performing well on new cases, not only on the training ex- 72 

amples. 73 

Data, features, and representations: Classic ML relied on human-designed features; modern approaches increas- 74 

ingly learn representations directly from raw inputs (via deep models or self-supervised objectives), reducing manual 75 

engineering[7,8]. 76 

Model families (high level): 77 

Linear models (logistic/linear regression): simple, interpretable baselines; effective with near-linear relations or 78 

limited data; 79 

Kernel methods (SVM, Gaussian processes): capture non-linear structure via similarity functions; 80 

Tree ensembles (Random Forests, Gradient Boosting): robust to mixed types/outliers; strong tabular baselines; 81 

Neural networks (feed-forward, CNNs, Transformers): flexible function approximators that scale with data and 82 

compute. 83 

Why ML works well now: The confluence of three reinforcing trends—(1) larger datasets, (2) more compute, and 84 

(3) better algorithms (optimization, architectures, regularization)—has enabled rich, transferable representations across 85 

vision, language, and structured data. 86 

2.2 Deep Learning (DL): encoders, tasks, and objectives 87 
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Deep learning (DL) is a branch of ML that uses multi-layer neural networks to learn complex functions directly 88 

from raw data, with hierarchical features learned end-to-end[7]. Training adjusts weights to minimize a loss via back- 89 

propagation and stochastic gradient methods (e.g., SGD, AdamW). 90 

2.2.1 Key backbones 91 

• CNNs (VGG, ResNet, DenseNet, Inception/Xception, EfficientNet, MobileNet, ConvNeXt/RegNet): exploit local 92 

patterns; strong for images; compute-efficient and data-friendly; Representative references appear in §2.5.1. 93 

• Vision Transformers (ViT, Swin): self-attention captures long-range context; well-suited to wide-field or 94 

high-resolution inputs; typically benefit from stronger pretraining[4,5]. 95 

2.2.2 Task heads 96 

• Classification (image/ROI label) for fast screening; 97 

• Detection (bounding boxes) for focal findings; 98 

• Segmentation (pixel/voxel masks) when geometry/staging matters; 99 

• Seg→Cls (segmentation-assisted classification) to boost sensitivity for subtle, small targets. 100 

2.2.3 Training essentials 101 

• Optimization/regularization: SGD/AdamW, residual connections, normalization, dropout, weight decay, and data 102 

augmentation (e.g., flips/rotations, MixUp, CutMix)[15,16]; 103 

• Losses under imbalance: class-weighted cross-entropy, Focal Loss for classification/detection[17], Dice/IoU-aware 104 

losses (e.g., Focal-Tversky and Generalized Dice for segmentation[18,19]; 105 

• Calibration: temperature scaling with reliability diagrams/ECE for decision-useful probabilities[20]. 106 

Evaluation & robustness: Use ROC-AUC and PR-AUC under skew; report sensitivity/specificity at clinically fixed 107 

thresholds with confidence intervals. Prevent leakage with subject/site-level splits. Self-/semi-supervised pretraining 108 

and careful augmentation improve cross-site transfer [8, 40]. 109 

2.3 Clinical Overview of Dental Anomalies and Oral Diseases  110 

Global burden: Oral diseases are among the most common non-communicable conditions worldwide (~3.5 billion 111 

affected), driven mainly by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion). Consequences 112 

include pain, infection, tooth loss, and impaired nutrition, speech, and quality of life—especially in underserved set- 113 

tings [1,2] 114 

Routine diagnosis: Clinical examination plus radiographic interpretation remains standard, yet early or subtle le- 115 

sions (e.g., proximal caries, incipient periapical radiolucencies) are frequently missed, and inter-observer variability 116 

reduces reliability [3]. Imaging adds modality-specific cues: bitewings (interproximal enamel–dentin changes), peri- 117 

apicals (apical radiolucency), OPG (jaw-wide screening), CBCT (3D tooth–bone anatomy), and intraoral RGB (col- 118 

or/texture) [11],[21–24] Representative appearances are shown in Figure 1, and clinical targets are mapped to modality 119 

and deep-learning (DL) task types in Table 1. 120 

Brief disease primers (diagnostic signatures): 121 

• Dental caries: enamel–dentin radiolucency; bitewings preferred for proximal lesions; conservative contrast han- 122 

dling preserves faint signals [21,22];  123 

• Gingivitis & calculus: erythema/edema and mineralized plaque; in RGB, white balance and ROI-centric framing 124 

stabilize color cues [11]; 125 

• Periodontitis: crestal bone-level reduction and angular defects; measurement/segmentation on BW/OPG with 126 

stage-aware reporting [9,10]; 127 

• Periapical lesions: apical radiolucency ± cortical disruption; PA first, CBCT for 3D extent; Seg→Cls can improve 128 

sensitivity for small lesions[13,  [24 ; 129 

• Tooth wear/erosion: glossy facets, enamel loss, cupping; standardized RGB capture mitigates illumination bias 130 

[11]; 131 

• Oral mucosal ulcers: shallow ulcer base with erythematous halo and fibrin slough; careful annotation required 132 

due to visual variability[11]. 133 



Dasinya Journal for Engineering and Informatics. 2025, 1, 7. 4 of 20 
 

 

 134 
 135 

 136 

Figure 1. Representative findings across modalities (clinical montage): (A) intraoral RGB; (B) PA/BW radiographs; (C) 137 

OPG; (D) CBCT/IOS. 138 

Table 1. Clinical targets mapped to primary imaging modality, radiologic signature, DL head(s), and Representative studies 139 

Condition Primary modality Typical signature DL task focus 
Representative 

studies 

Proximal /occlusal 

caries 
Bitewing /Periapical 

Enamel–dentin ra-

diolucency 

Classification/ 

Detection 

[22], [3] 

Periodontitis (bone 

loss) 
Bitewing / OPG 

Crestal bone-level 

reduction; angular 

defects 

Measurement / 

Segmentation 

[9], [10] 

Periapical lesion Periapical / CBCT 
Apical radiolucency; 

cortical disruption 

Detection + Seg-

mentation 

[13],[26] 

Tooth wear / erosion Intraoral RGB 
Glossy wear facets; 

enamel loss; cupping 

Grading /  

Classification 

[11] 

Developmental 

anomalies 
OPG / CBCT 

Missing/extra teeth; 

impactions 

Multi-label  

classification 

[6], [3] 

Mucosal inflamma-

tion / ulcers 
Intraoral RGB 

Redness; ulcer base; 

fibrin slough 

Lesion localization / 

Classification 

[11] 

1 Note: OPG = orthopantomogram (panoramic radiograph); CBCT = cone-beam computed tomography; RGB = intraoral color im- 140 

aging; DL = deep learning. “Typical signature” items are illustrative and may vary by exposure/positioning. 141 

2.4 Imaging Modalities & AI Relevance 142 

Modality-aware design: Tailor preprocessing and model choices to each modality’s physics/geometry to preserve 143 

faint cues and avoid anatomical distortion [3]. 144 

 The main practical points are: 145 

• Intraoral RGB: white-balance/color-constancy → mild photometric jitter; ROI cropping; bounded augmenta- 146 

tion[25]. see the preprocessing block in Figure 2. 147 

• Periapical/OPG: conservative contrast (mild CLAHE/gamma), small affine transforms; avoid heavy blur that 148 

suppresses subtle radiolucencies [3]; key cautions are listed in Table 2; 149 

• CBCT/IOS: isotropic resampling and intensity harmonization; MAR when appropriate (document potential in- 150 

tensity shifts); strict registration QA for CBCT ↔IOS fusion[23,24,26]; the Seg→Cls variant is sketched in Figure  3. 151 

 152 
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 153 

Figure 2. Reliability-aware workflow: preprocessing → encoder (CNN/Transformer) → uncertainty → calibration (ECE) → 154 

fixed operating points 155 

 156 

Figure 3. Segmentation-assisted pipeline (Seg→Cls): enhancement/cropping/augmentation → feature backbone → pro- 157 

posals/masks → calibrated decision with Grad-CAM overlays.  158 

Table 2. Modalities, typical DL tasks, advantages/limitations, and practical notes. 159 

Modality Typical tasks Advantages Limitations Practical notes 

Intraoral RGB 

Caries, calculus, 

mucosal lesions, 

discoloration 

Rich color 

/texture; low 

cost 

Illumination/ 

specular glare; 

pose variability 

Apply white-balance 

and color-constancy; 

crop to ROI; use 

bounded color jitter.  

Periapical ra-

diograph 

Apical lesions; en-

dodontic status; 

per-tooth assess-

ment 

High 

root/detail 

 resolution 

Sensitivity to 

projection  

geometry 

Prefer conservative con-

trast operations (e.g., 

mild local contrast); 

avoid heavy blur; small 

affine only. 

Bitewing radi-

ograph 

Proximal caries; 

crestal bone levels 

Good inter-

proximal visi-

bility 

Overlap; hori-

zontal angula-

tion errors 

Minor rotations/affine 

only; document align-

ment protocol.  
Occlusal 

radiograph 

Impactions; super-

numeraries 

Wide occlusal 

field 

Lower in-plane 

resolution 

Use multi-scale encod-

ers; moderate input size. 

Panoramic 

(OPG/DPR) 

Multi-finding 

screening; anomaly 

mining; staging 

Global jaw 

context 

Magnification; 

over-

lap/distortion 

Multi-scale/long-range  

encoders; careful gray-

scale normalization.  
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Cephalometric 

(lateral/PA) 

Skeletal relations; 

landmarking 

Standardized 

projections 

Landmark vari-

ability 

Keypoint/segmentation 

pipelines; inter-rater 

consistency checks.  

CBCT (3D) 
Implants, patholo-

gy, root morphology 

True volumet-

ric anatomy 

Dose; metal ar-

tifacts; voxel size 

variance 

Isotropic resampling; 

MAR when needed; 

intensity harmonization 

across scans.  

IOS (3D sur-

face) 

Occlusion; aligners; 

surface fusion 

Accurate den-

tal surfaces 

No internal 

anatomy 

Smooth meshes; rig-

id/non-rigid registration 

QA; fuse with 

CBCT/OPG if available.  

NILT / QLF / 

OCT / HSI 

Early car-

ies/plaque/cracks; 

tissue typing 

Non-ionizing; 

quantita-

tive/spectral 

Limited FoV; 

device availabil-

ity; high dimen-

sionality 

Device calibration; di-

mensionality reduction; 

patch-based local 3D 

nets 

2Notes: ROI = region of interest; BW = bitewing; PA = periapical; OPG/DPR = panoramic radiography; CBCT = 160 

cone-beam computed tomography; IOS = intraoral surface scan; NILT = near-infrared light transillumination; QLF = 161 

quantitative light-induced fluorescence; OCT = optical coherence tomography; HSI = hyperspectral imaging; MAR = 162 

metal-artifact reduction; FoV = field of view. “Conservative contrast operations” = mild local contrast adjustments (e.g., 163 

CLAHE with gentle gamma) that preserve faint radiolucencies; “intensity harmonization” = matching intensity ranges 164 

across scanners/exams. 165 

2.5 CNN/Transformer Families & Heads 166 

Scope: This section summarizes widely used image encoders (classic CNNs, modern convnets, vision transform- 167 

ers) and links them to task heads (classification, detection, segmentation, Seg→Cls) that recur across dental imaging. 168 

The goal is a practical “when to use what” map tied to data scale, lesion size/contrast, field-of-view, and deployment 169 

constraints. Figures 2–3 visualize the surrounding workflow choices; Tables 3–4 give side-by-side comparisons. 170 

2.5.1 Convolutional encoders (representative families) 171 

Convolutional encoders (CNNs) are a practical default for dental imaging because they capture local textures and 172 

edges, run efficiently on common hardware, and transfer well from ImageNet. With limited or imbalanced da- 173 

tasets—typical in dentistry—CNN backbones often deliver strong, stable baselines for periapical, bitewing, and pan- 174 

oramic tasks. Use them when latency/memory matter or when global long-range context is not the primary bottleneck. 175 

• ResNet-50. Residual skips stabilize deep training and transfer well; a dependable default for periapical/OPG classifiers and 176 

detectors. On small single-center sets, tighten regularization and calibrate probabilities to curb overfitting [27,20]; 177 

• VGG-16. Deep stacks of 3×3 convs with a large FC head; stable transfer features but heavy (~138 M params). 178 

Mostly a baseline now when memory permits [28]; 179 

• DenseNet-121. Dense connections encourage feature reuse and strong gradients with good parameter efficiency; 180 

watch activation memory during training [29] 181 

• InceptionV3 / Xception. Multi-scale (factorized) convs and auxiliary heads capture wide-field context useful for 182 

OPG; prefer ≥299² inputs; Xception’s depthwise separables are parameter-efficient [30,31]; 183 

• MobileNetV2/V3. Inverted residuals and NAS/SE refinements suit edge-class latency/power budgets (chair- 184 

side/handheld). Report ECE and apply temperature scaling before fixing clinical thresholds; 185 

• EfficientNet / EfficientNetV2. Compound scaling offers strong accuracy-efficiency; B0–B3 reliable on 186 

RGB/periapicals; larger variants need careful input sizing and memory planning [32,33] 187 

• ConvNeXt / RegNet. “Modern conv” designs that match transformer-level accuracy with predictable compute; 188 

check batch-1 latency for high-res OPG multi-finding and pick RegNetX/Y to meet millisecond budgets [34–36]. 189 

2.5.2 Vision transformers (global-context encoders) 190 

Unlike CNNs, vision transformers use self-attention to capture long-range context across patches 191 

• ViT: Global self-attention over patch tokens; excellent long-range context but benefits from large pretraining or 192 

strong regularization on smaller dental datasets [4]; 193 
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• Swin Transformer: Shifted-window attention yields hierarchical, high-resolution features well suited to detec- 194 

tion/segmentation on OPG and 3D; typically more data-efficient than vanilla ViT in medical imaging [5]. 195 

Rule of thumb: Prefer convnets (ResNet/DenseNet/EfficientNet) for limited data, high-SNR radiographs, and tight 196 

latency; consider Swin/hybrids when long-range context is essential (panoramic, large-FoV, multi-finding) and com- 197 

pute allows. 198 

2.5.3 Task heads and their clinical fit 199 

• Classification (image/ROI label). Best for screening/global status; simple and fast but no localization. Pair with 200 

calibrated thresholds for triage [20,41]; 201 

• Object detection (boxes + scores). Targets focal findings (e.g., proximal caries, periapical cues). Focal Loss helps 202 

with class/anchor imbalance [17]. 203 

• Segmentation (pixel/voxel masks). Needed when geometry matters (bone-loss measurement, lesion extent). 204 

Combine CE with Dice/IoU-aware losses; Focal-Tversky can boost small-structure sensitivity [18,19]; 205 

• Seg→Cls (segmentation-assisted classification). Two-stage (masks → region features → final class) improves sen- 206 

sitivity to small/low-contrast lesions and supports Grad-CAM overlays; useful for subtle periapical pathology 207 

[9,12]; 208 

• DETR-style detectors. End-to-end set prediction with fewer hand-tuned priors; clean design but comparatively 209 

data-hungry and slower to converge [37]. 210 

2.5.4  Data augmentation — task/modality-aware recipes 211 

Good augmentation in dental imaging should stay anatomically plausible and respect imaging physics. The goal 212 

is to boost generalization without washing out subtle diagnostic cues (e.g., faint interproximal radiolucencies or mild 213 

mucosal erythema). Below are conservative, low-risk defaults by modality and task. Parameters are deliberately 214 

modest; push them further only if you can justify with ablations and visual spot-checks[38]. 215 

General principles (apply everywhere) 216 

1. Keep geometry believable. Use small rotations/translations/scale to avoid unrealistic tooth/bone deformation . 217 

2. Protect diagnostic signal. Avoid heavy blur/sharpen and extreme photometric shifts that could hide early caries or 218 

apical changes. 219 

3. Match real-world variability. Use site/device-aware photometrics (e.g., color constancy for RGB; gentle local con- 220 

trast for X-ray) to mimic clinical capture differences]. 221 

4. Prevent leakage & document settings. Augment after patient-level splitting with site/scanner stratification; report 222 

exact operators/ranges; calibrate probabilities (reliability diagrams/ECE) before fixing thresholds. 223 

(A) Radiographs (BW/PA/OPG) 224 

• Geometry: rotations ≈±3–5°, tiny translations (≤3%), scale ≈0.97–1.03; horizontal flip only when left–right sym- 225 

metry is clinically acceptable. 226 

• Photometrics: mild local contrast (e.g., CLAHE clip 1.0–2.0; 8×8 grid) or gentle gamma ≈0.9–1.1 to counter expo- 227 

sure variability without over-enhancing edges. 228 

• Notes: stay conservative to preserve faint proximal radiolucencies and apical signs; for OPG, pair with careful 229 

grayscale normalization. 230 

(B) Intraoral RGB photographs 231 

• Color pre-normalization: white balance or color-constancy (e.g., Gray-World/Shades-of-Gray) to reduce de- 232 

vice/lighting drift. 233 

• Framing: ROI-centric random crops (scale ≈0.85–1.00; aspect ≈0.9–1.1) to maintain tooth/gingival context. 234 

• Conservative jitter: brightness ±0.10–0.18, contrast ±0.08–0.15, saturation ±0.10–0.20, hue ±5–10°, gamma 0.9–1.1. 235 

• Avoid: strong blur/sharpen or aggressive color shifts that might mask enamel discoloration or mucosal erythema 236 

[3,24,25]. 237 

(C) CBCT volumes and CBCT↔IOS fusion 238 
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• Resampling & geometry: isotropic resampling to a clinically appropriate voxel size before augmentation; small 3D 239 

rotations ≈±5–10° and scale ≈±5% only. 240 

• Intensity handling: site/scanner harmonization; if metal-artifact reduction (MAR) is used, document parameters 241 

and audit downstream impact because MAR changes intensity statistics. 242 

• Fusion: enforce QA for CBCT↔IOS registration and report alignment metrics/failure modes [23,24]. 243 

(D) Detection and segmentation heads 244 

• Sampling: class- and ROI-balanced crops/patches to counter foreground sparsity (anchors/proposals). 245 

• Deformations: small affine/elastic only; avoid shape warps that would invalidate measurement tasks (e.g., 246 

bone-loss staging). 247 

• Loss coupling: use Focal Loss for detection, and Generalized Dice or Focal-Tversky for imbalanced/small masks in 248 

segmentation [17–19]. 249 

(E) Mix-based regularizers (use sparingly) 250 

• MixUp/CutMix: helpful on small, heterogeneous cohorts to stabilize decision boundaries; keep strengths modest 251 

(typical α≈0.2–0.4; CutMix probability ≤0.2) so you don’t wash out faint signals [15,16,21] 252 

• CoarseDropout: a single small hole (≤24–32 px in 2D) at low probability to encourage robustness without erasing 253 

key anatomy. 254 

Reporting, calibration, and safeguards 255 

• Qualitative verification: include a montage of augmented samples per modality (in the supplement) t o visually 256 

confirm plausibility; 257 

• Ablations: report no-aug vs proposed-aug; under class imbalance, include PR-AUC alongside ROC-AUC, and 258 

report sensitivity/PPV at pre-specified specificity (e.g., ≥0.90) with 95% CIs [7,27]; 259 

• Calibration: augmentation may cut variance but does not guarantee calibrated probabilities; apply temperature 260 

scaling and report reliability diagrams/ECE before fixing clinical thresholds[ 20]. 261 

Take-home: Prefer small, physics-respecting transforms tuned to each modality and task. For radiographs, em- 262 

phasize conservative contrast and minimal geometry; for RGB, stabilize color; for CBCT, prioritize 263 

resampling/harmonization and registration QA. Couple these recipes with imbalance-aware losses, calibration, and 264 

transparent reporting to achieve clinically meaningful, reproducible gains[37]. 265 

2.5.5 Choosing encoders and heads — practical guidance 266 

Selecting a backbone and prediction head should reflect the task (classification, detection, segmentation), dataset 267 

scale/imbalance, and deployment constraints. The checklist below summarizes pragmatic defaults and reporting prac- 268 

tices. 269 

Pick the backbone/head to match task, data scale/imbalance, and deployment limits. 270 

• Small, imbalanced datasets: ResNet-50, DenseNet-121, or EfficientNet-B0/B3; class-aware training (class weights or 271 

Focal) with mild label smoothing; avoid double-weighting; calibrate with temperature scaling; report PR-AUC and 272 

sensitivity/PPV at fixed specificity (≥0.90) with 95% CIs; include a small external test when available [27,32,  20]. 273 

• Wide-field OPG: InceptionV3, ConvNeXt, or Swin with detection/segmentation heads; many tasks are mul- 274 

ti-label—use BCE/Focal-BCE and report mAP/AP and macro-F1; measure throughput and batch-1 latency at clin- 275 

ical resolution [31,34,5]. 276 

• Subtle, small, low-contrast lesions: segmentation or Seg→Cls; consider Focal-Tversky/unified-focal; gentle CLAHE 277 

can help—quantify on validation [18,25]. 278 

• Edge (chairside): efficient backbones (EfficientNet-B0/B3 or compact variants); plan pruning and INT8 quantiza- 279 

tion; profile batch-1 latency/memory/power; assess calibration (ECE) before locking thresholds [32, 20]. 280 

• 3D CBCT & fusion: Swin or hybrid pyramids feeding 3D/2.5D segmenters; document MAR, intensity harmoniza- 281 

tion, and resampling; validate registration (TRE, HD95/Chamfer) and report timing/memory [23, 26]. 282 
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Reporting & calibration (all): Compute ECE with reliability diagrams; fix thresholds on validation, then report 283 

sensitivity/PPV (or mAP for detection, Dice/IoU for segmentation) with 95% CIs on internal/external tests. Include 284 

runtime, memory, and—when relevant—energy at clinical resolution [20,41]. 285 

 Table 3. Encoder families— core idea, strengths/limits, typical dental fit, key refs. 286 

Family  Core idea Strengths Limitations Typical dental fit Key 

refs 

ResNet-50 Residual skips Stable transfer, 

robust 

Can overfit 

small cohorts 

Periapical/OPG classi-

fiers & detectors 

[27] 

DenseNet-121  Dense reuse Param-efficient Activation 

memory 

Radiographs with lim-

ited data 

[30] 

InceptionV3/Xception Factorized 

convs 

Multi-scale context Prefers ≥299² 

inputs 

Wide-field OPG [31,32] 

EfficientNet-B0/B3 Compound 

scaling 

Strong 

acc-efficiency 

Larger variants 

need care 

RGB/ periapical, 

screening 

[33,34] 

      

Mobile-friendly 

CNNs 

Inverted re-

siduals 

Edge laten-

cy/power 

Capacity limits Chairside/handheld [32] 

ConvNeXt/RegNet Modern conv 

design 

Transformer-level 

acc. 

Check batch-1 

latency 

OPG multi-finding [34-36] 

ViT/Swin Self-attention Global context Data/pretrain 

hungry 

OPG/3D; detection/seg [4,5] 

 287 

Table 4. Task heads and when to use them. 288 

Head Output Prefer 

when… 

Pros Cons Dental use Refs 

Classifier Image/ROI label Screening /  Simple, fast No localiza-

tion 

RGB multi-label; 

OPG screening.  

[7,28] 

Detector Boxes + scores Focal lesions / 

triage 

Localizes Misses shape Caries/periapical on 

BW/PA.  

[37] 

Segmenter Pixel/voxel mask Geometry / 

staging 

Precise ex-

tent 

Annotation 

cost 

Bone loss; lesion 

masks.  

[19,18] 

Seg→Cls Mask→features→class Small / 

low-contrast 

Boosts sen-

sitivity 

Two-stage Periapical radiolu-

cencies.  

[9,12] 

DETR-style Set of objects Fewer priors Clean de-

sign 

Data-hungry OPG multi-finding [39] 

 289 

2.6 Class Imbalance and Probability Calibration 290 

Why imbalance matters: Dental datasets are typically skewed (many healthy/mild cases, fewer severe or rare 291 

conditions). Under skew, models can look “good” on accuracy while failing to detect minority classes. Two levers are 292 

used together: (A) data-level rebalancing and (B) loss-/threshold-level reweighting. 293 

(A) Data-level rebalancing: 294 

• Stratified k-fold and patient-level splits keep prevalence consistent and prevent leakage across views of the same 295 

subject; 296 

• Class-aware sampling / minority oversampling paired with stronger augmentation for rare classes (e.g., MixUp, 297 

CutMix, careful photometric/affine; Albumentations) helps reduce variance without memorizing artifacts; 298 

• For detection/segmentation, hard-example mining and patch/ROI balancing reduce anchor/foreground sparsity. 299 

 300 
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(B) Losses, smoothing, and thresholds: 301 

• Class-weighted CE or Focal for skewed classification; Focal-Tversky/Generalized Dice for tiny/sparse masks; mild 302 

label smoothing can temper over-confidence on small, heterogeneous sets [17–19]. 303 

• Fix operating thresholds on the validation set, then report sensitivity and PPV at a pre-specified specificity (e.g., ≥ 304 

0.90) with 95% confidence intervals [41]. 305 

Calibration for decision-useful probabilities: Neural networks are often miscalibrated (over-confident). Temper- 306 

ature scaling is a simple, effective post-hoc method to reduce ECE, and reliability diagrams plus the Brier score com- 307 

municate probability trustworthiness. For safety-critical use, adopt selective prediction (abstain under low confidence) 308 

to trade coverage for risk [20,40]. 309 

Table 5. Class-imbalance remedies at a glance. 310 

Lever What it does Prefer when… Caveats Refs 

Class-aware sampling 

/ minority over-

sampling 

Increases rare-class ex-

posure per epoch 

Severe skew; small da-

tasets 

Risk of overfitting 

without strong aug-

mentation 

[21,38] 

MixUp / CutMix (with 

standard aug) 

Regularizes decision 

boundary; combats label 

noise 

Limited labels; hetero-

geneous capture 

Tune mix ratios; pre-

serve faint radiolucen-

cies on X-ray 

[15,16,21] 

Class-weighted CE 
Penalizes minority errors 

more 

Any skew; simple base-

line 

Can still be 

over-confident 
[17] 

Focal Loss (cls.) 

Down-weights easy neg-

atives; focuses on hard 

positives 

Detection/cls. with many 

negatives 

Tune γ and α; watch 

convergence 
[17] 

Unified-Focal / Fo-

cal-Tversky (seg.) 

Emphasizes small/sparse 

masks 

Tiny lesions; bone-loss 

edges 

Balance with Dice/CE 

for stability 
[18,19] 

Label smoothing 

Reduces 

over-confidence, noise 

sensitivity 

Small/heterogeneous 

labels 

Too much can blur 

minority signals 
[30] 

Thresholds at fixed 

specificity 

Clinically aligned opera-

tion 

Screening/triage work-

flows 

Must be set on valida-

tion, then locked 
[41] 

Temperature scaling + 

ECE 
Calibrates probabilities Before deployment 

Re-tune if distribution 

shifts 
[20] 

 311 

2.7 Explainability and Multimodal Fusion 312 

Explainability (XAI): what it is—and is not. Post-hoc methods help clinicians judge plausibility (did the model 313 

look at the right place?) and curate error galleries; they do not guarantee correctness. Use multiple views and sanity 314 

checks, and interpret XAI alongside metrics and external validation [41–43] 315 

Figure 4 illustrates the Grad-CAM pipeline used in this review—covering target-layer selection, heat-map com- 316 

putation, and upsampling/overlay—and serves as a reference for the plausibility panels reported later . 317 

 318 
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 319 
 320 

Figure 4. Schematic of the Grad-CAM workflow used in this review: (1) select the target convolutional layer; (2) compute 321 

class-discriminative gradients and weight the feature maps; (3) upsample and overlay the heat map on the input image for 322 

clinician-readable plausibility checks [43].  323 

1. Common tools: 324 

• Grad-CAM: fast class-discriminative heatmaps—good for plausibility overlays and quick QA; layer-dependent 325 

and resolution-limited [41]; 326 

• Integrated Gradients: axiomatic attributions; useful for aggregated trends; sensitive to baseline choice [42] ; 327 

• SHAP: consistent feature contributions; informative cohort-level analysis; computationally heavier[43] 328 

Table 6. Popular XAI methods. 329 

Method Strengths Limitations Dental use cases Refs 

Grad-CAM Fast, intuitive overlays 
Layer/resolution de-

pendent 

Lesion plausibility; failure 

analysis panels 
[41] 

Integrated Gra-

dients 
Axiomatic, path integrated 

Baseline choice sensi-

tivity 
Aggregate attribution trends [42]  

SHAP 
Consistent local→global con-

tributions 
Compute cost 

Cohort-level factor analysis, 

reader studies 
[43] 

 330 

2. Multimodal fusion (OPG/PA/CBCT‑IOS): Early fusion (with reliable registration) exploits complementary cues; 331 

late/attention fusion is safer when modalities are heterogeneous or missing. For CBCT‑IOS, enforce registration 332 

QA, isotropic resampling, and intensity harmonization; if MAR is applied, document potential intensity shifts and 333 

audit downstream bias [23,26]. Include ablations vs. single‑modality baselines and report site/scanner‑wise results 334 

[27]. 335 

2.8  Evaluation and Reporting 336 

2.8.1 Data splits and leakage prevention 337 

Use patient-level splits with site/scanner stratification; never allow multiple images from the same patient to cross 338 

train/validation/test. Include at least one external test cohort to quantify distribution shift [27].  339 

2.8.2 Metrics under class imbalance  340 

• Classifiers: ROC-AUC + PR-AUC; per-class precision/recall/F1; report sensitivity/PPV at a fixed specificity (e.g., ≥ 341 

0.90) with 95% CIs[40]; 342 

• Detectors: AP/mAP at relevant IoU thresholds; baselines include Faster R-CNN and DETR; see dental exemplars 343 

in §3 and Table 7 [37,39]; 344 

• Segmenters: Dice and IoU, with small-structure analyses (e.g., per-tooth bone-loss edges) [18,19]; 345 

• Calibration: reliability diagrams, ECE, optionally Brier; apply temperature scaling before fixing thresholds [20]. 346 

2.8.3 Statistical testing and uncertainty 347 
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Use patient-level bootstrapping to derive confidence intervals (CIs) and paired tests for matched designs. Quan- 348 

tify predictive uncertainty—e.g., Monte-Carlo Dropout—to enable selective prediction and risk–coverage analyses, so 349 

low-confidence cases can be flagged or deferred [44]. 350 

Generalization and shift robustness: 351 

Report site-wise performance and cross-site deltas. When target labels are unavailable, benchmark unsupervised do- 352 

main adaptation (DANN; Deep CORAL)[45] and test-time adaptation (TENT) as robustness baselines [46],[[47]. 353 

Document any preprocessing that alters intensity statistics—such as metal-artifact reduction (MAR) in CBCT—and 354 

analyze downstream impact [26]. 355 

2.8.4 Computational efficiency and deployment artifacts. 356 

Provide batch-1 latency and memory footprint on intended hardware, plus throughput at clinical resolution. Re- 357 

lease structured outputs (DICOM-SR/JSON) and frozen thresholds for audits and PACS/RIS integration. 358 

2.8.5 Ethics, privacy, and fairness (brief). 359 

Favor multi-site collaboration—including federated training—to expand diversity without centralizing PHI, and 360 

preserve site-level audit trails to enable accountability. When privacy-enhancing technologies are used, report formal 361 

parameters (e.g., (ε,δ)(\varepsilon,\delta)(ε,δ) for differential privacy) alongside the measurable utility impact at 362 

clinically relevant operating points. Finally, publish subgroup audits (age/sex/device/site) and probe for shortcut 363 

learning (e.g., acquisition markers, metal artifacts) to ensure equitable and robust performance across populations.  364 

3. Literature Review and Critical Analysis 365 

This review synthesizes evidence by modality (intraoral RGB; panoramic radiography OPG/DPR; periap- 366 

ical/bitewing; 3D CBCT and CBCT–IOS fusion) and by task design (classification, detection, segmentation, Seg→Cls). 367 

We prioritize studies reporting explicit metrics and clinically interpretable operating points, with thresholds 368 

pre-specified on validation and results summarized at those operating points (e.g., specificity ≥ 0.90 with sensitivi‑ 369 

ty/PPV and 95% CIs) per contemporary reporting guidance [40]. 370 

3.1  Intraoral RGB (screening, grading, tele-dentistry) 371 

Across standardized photo capture, multi-label screening and targeted grading are consistently feasible. Prepro- 372 

cessing typically combines white-balance or color constancy with bounded photometric jitter and ROI-centric crops. 373 

Mix-style regularizers appear when labels are limited. Lightweight backbones dominate for accuracy–efficiency, and 374 

several works add saliency to aid plausibility review. 375 

Representative evidence includes early gingivitis detection from intraoral photos using CNN/detector pipelines 376 

[12], broad multi-label screening at the image level with explicit macro-F1/PR-AUC reporting [11], and condi- 377 

tion-specific grading of tooth wear with high agreement [73].  378 

Further, lightweight ensembles (VGG/MobileNet/Inception) achieve strong internal accuracy at low latency [78], 379 

while fuzzy rank-based ensembles with uncertainty targeting heterogeneous capture report robust performance on 380 

public sets [79]. Chairside-oriented MobileNetV2 models augmented with Grad-CAM illustrate edge-efficient infer- 381 

ence and clinician-readable overlays [83]. A comparative transfer-learning benchmark focused on dental disease clas- 382 

sification helps position backbone trade-offs specifically for RGB tasks [48].Representative RGB studies and their key 383 

outcomes are summarized in Table 7. 384 

3.2  Panoramic radiographs (OPG/DPR): multi-finding screening and staging 385 

OPG offers jaw-wide context but is sensitive to magnification and overlap. Baseline screeners underscore the 386 

value of careful grayscale normalization and multi-scale context [6]. Staging studies align predictions to clinical defi- 387 

nitions and increasingly emphasize calibrated operating points and external cohorts as the logical next step [10],[18]. 388 

Architecturally, modern convnets (e.g., ConvNeXt) and attention models (e.g., Swin) capture long-range structure at 389 

higher input resolutions; hybrid CNN+ViT approaches also appear with confidence estimation to support thresholding 390 

and triage workflows [54]. Pediatric OPG work explores age-aware modeling and highlights cross-site shift as a key 391 

limitation [82]. Methods that pair deep CNN features with classical classifiers (e.g., SVM) can deliver high agreement 392 

when labels are limited, albeit with two-stage complexity [53]. Broadly, reported results suggest competitive AUC/F1 393 

on internal cohorts, with backbone and resolution choices materially influencing performance [13].see Table 7.  394 
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3.3  Periapical/bitewing radiographs: detection and Seg→Cls 395 

Foundational pipelines established feasibility for tooth detection/numbering on periapical radiographs, providing 396 

reference baselines and mAP by tooth index [56][49]. For lesions, instance/semantic segmentation—alone or as a 397 

front-end to a final classifier (Seg→Cls)—consistently improves sensitivity to small, low-contrast targets relative to 398 

detection-only approaches, at increased annotation cost [57],[58]. Modern convnets trained with gentle radiograph 399 

augmentation preserve faint radiolucencies and yield competitive AUC/PR-AUC, while emphasizing the need for 400 

cross-site testing [50]. 401 

3.4 3D CBCT and CBCT-IOS fusion 402 

 CBCT contributes volumetric tooth–bone detail; IOS adds accurate surface geometry. Fusion improves anatom- 403 

ical completeness when registration QA and intensity harmonization are enforced, with studies reporting higher 404 

planning accuracy versus single-modality inputs [13]. Metal-artifact reduction (MAR) enhances visibility yet can alter 405 

intensity statistics; both parameters and downstream effects should be documented and audited [26]. Cross-cutting 406 

methods: imbalance, calibration, and explainability. 407 

3.5 Cross-cutting observations 408 

Across modalities, three patterns recur. First, conservative, modality-aware preprocessing (normalization for 409 

OPG; color stabilization for RGB) supports stable training and plausible overlays [6],[11],[83]. Second, segmentation or 410 

Seg→Cls tends to boost sensitivity for subtle, small targets in periapical tasks, with dataset resources emerging to 411 

standardize comparison and reporting [57], [51]. Third, hybrid or attention-augmented encoders help capture 412 

long-range context in OPG; several groups pair these with confidence measures to aid threshold selection and reader 413 

workflows [54],[82]. External, cross-site validation remains the main limitation cited across studies. 414 

Table7. Representative recent studies (abridged, organized by modality) . 415 

Modali-

ty 

Study Problem & design Key contribution Limitations/notes Results (brief) 

RGB Alalharit

h et al., 

2020 [12] 

Gingivitis detection 

from intraoral photos 

(CNN/detector) 

Standardized capture 

+ ROI improves 

grading/detection 

Needs imbalance 

handling & calibra-

tion 

AUC/Acc. im-

proved vs. naïve 

preprocessing   
RGB Park et 

al., 2022 

[11] 

Multi-label intraoral 

photo screening 

Feasible broad 

screening on RGB 

Heterogeneous cap-

ture; threshold ef-

fects 

Mac-

ro-F1/PR-AUC 

reported; PPV 

depends on 

threshold.  
RGB Pang et 

al., 2025 

[73] 

Tooth-wear grading 

(CNN) 

Sensitive to subtle 

enamel wear; clini-

cally aligned grading 

Single condition; not 

multi-condition 

High κ and 

grading agree-

ment.  
RGB Hussain 

et al., 

2023 [78] 

Lightweight ensemble 

(VGG/MobileNet/Incep

tion) 

High accuracy with 

low-latency models 

Depends on ensem-

ble policy; shift risk 

Acc. >90% (in-

ternal); low la-

tency.  
RGB Razmjou

ei et al., 

2025 [79] 

Fuzzy rank-based en-

semble + uncertainty 

Robust fusion under 

heterogeneity 

Ensemble inference 

overhead 

Acc. ~91–97% on 

public sets.  

RGB Taşkın, 

2024 [83] 

MobileNetV2 + 

Grad-CAM (edge) 

Chairside-efficient 

with saliency maps 

Backbone capacity 

limits 

Acc. >85% 

(task-specific).  
RGB Ikhwani 

et al., 

2024 [48] 

Comparative transfer 

learning for dental dis-

ease classification 

Side-by-side back-

bone benchmarking 

for RGB tasks 

Dataset diversi-

ty/standardization 

Competitive 

 accuracy across 

TL backbones.  
OPG Zhu et 

al., 2023 

[6] 

OPG multi-disease 

CNN 

Normalization + mul-

ti-scale context 

Limited interpreta-

bility reporting 

Competitive 

AUCs (internal).  
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OPG Almalki 

et al. 

(2022) 

[13] 

OPG model benchmark Baselines; effect of 

preprocessing 

Dataset variability Back-

bone/resolution 

materially affect 

AUC/F1. 

 

OPG Hsieh & 

Cheng, 

2024 [53] 

CNN features + SVM 

on OPG 

High κ with limited 

labels 

Two-stage complex-

ity 

κ >0.8 (internal 

split). 

  
OPG Li (2025); 

Shon 

(2022) 

[10], [18] 

Periodontitis staging on 

OPG 

Clinically aligned 

outcomes 

Geometry sensitivi-

ty; calibration need-

ed 

Stage-wise F1/κ; 

sensitivity at set 

specificity. 

  
OPG Parkhi et 

al., 2025 

[54] 

CNN+ViT with confi-

dence on OPG 

Calibrated lo-

cal+global features 

  

External cohorts 

pending 

AUC/PR-AUC 

improved vs. 

CNN-only 

OPG Pham, 

2025 [82] 

Pediatric OPG trans-

formers 

Age-aware modeling Cross-site shift AUC stable 

within site; 

drops cross-site.  
Periap-

ical 

Chen et 

al., 2019 

56] 

Tooth detec-

tion/numbering 

Foundational detec-

tion pipeline 

Older backbones mAP per-tooth 

numbering re-

ported.  
Periap-

ical 

Fatima 

et al., 

2023 [57] 

Instance segmentation 

of periapical lesions 

Masks improve sen-

sitivity for 

small/low-contrast 

lesions 

Annotation cost Higher 

small-lesion re-

call vs. detec-

tion-only.  
Periap-

ical 

Thalji et 

al., 2024 

[51] 

Segmented periapical 

dataset 

Resource for fair 

compari-

sons/standardized 

reporting 

Label distribution 

skew 

Enables stand-

ardized 

IoU/Dice. 

  
Periap-

ical 

Liu et 

al., 2024 

[50] 

Periapical lesion detec-

tion with ConvNeXt 

Modern convs + gen-

tle augmentation 

Needs cross-site 

testing 

Competitive 

AUC/PR-AUC; 

preserves faint 

lesions.  
3D/Fusi

on 

Hegazy 

et al., 

2023 [26]  

CBCT MAR Artifact reduction 

improves inputs 

MAR side effects to 

track 

Improved SNR 

and downstream 

accuracy 

3D/Fusi

on 

Liu et 

al., 2023 

[13] 

Deep CBCT↔IOS fu-

sion 

Better anatomical 

completeness 

Registration QA 

mandatory 

Higher planning 

accuracy vs. sin-

gle modality 

Abbreviations: AUC = area under the ROC curve; PR-AUC = area under the precision–recall curve; PPV = positive predictive value; κ 416 

= Cohen’s kappa; mAP = mean average precision; IoU = intersection over union; ECE = expected calibration error; SNR = sig‑ 417 

nal-to-noise ratio; TL = transfer learning. 418 

4. Discussion and Model Analysis 419 

In this section, we translate the literature synthesis into practical design guidance. We begin with backbone fami- 420 

lies and their trade-offs (§4.1), then map clinical questions to task heads (§4.2), formalize operation under class imbal- 421 

ance and probability calibration (§4.3–§4.4), and close with engineering considerations for deployment (§4.5). 422 

4.1 Backbone families: practical trade-offs 423 

• ResNet-50 / DenseNet-121. Reliable defaults for radiographs and RGB under constrained data; calibrate predic- 424 

tions to mitigate over-confidence on single-center cohorts [27,28]. 425 
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• EfficientNet-B0/B3, MobileNetV2/V3. Strong accuracy–efficiency for chairside/edge use; report ECE and apply 426 

temperature scaling before fixing thresholds [32,20] 427 

• ConvNeXt / Inception / Swin. Favor when long-range, multi-scale context is essential (OPG, multi-finding). Check 428 

batch-1 latency and memory footprint at clinical resolution [34,30] 429 

• ViT. Powerful global context with large-scale pretraining, hybrids or Swin often prove more data-efficient in 430 

medical imaging [4]. 431 

Takeaway: Start conv-first for limited data or edge constraints; escalate to Swin/hybrids for large-FOV OPG or 3D 432 

contexts when compute and data allow. A side-by-side of backbone families, data needs, and dental fit is provided in 433 

Table 8. 434 

4.2 Task heads vs. clinical questions 435 

• Classification: best for screening; requires calibrated thresholds and a clear intended use (triage vs. confirmatory) 436 

[20]. 437 

• Detection: localizes focal findings (e.g., proximal caries). Use Focal Loss for class/anchor imbalance [17]. 438 

• Segmentation: needed when geometry/staging matters (bone loss, lesion extent); report Dice/IoU and 439 

small-structure analyses [18,19]. 440 

• Seg→Cls (segmentation-assisted classification): two-stage (masks → region features → class) that improves sensi- 441 

tivity to small, low-contrast lesions and enables plausibility overlays; the workflow is illustrated in Figure 3. 442 

Trade-offs are extra annotation and two-stage complexity [9,12]. 443 

• DETR-style: cleaner priors with end-to-end set prediction, but typically more data-hungry and slower to converge 444 

[39]. 445 

To turn these principles into quick, actionable choices, Table 8 provides a concise map that links each clinical 446 

question to the most suitable head (Classifier / Detector / Segmenter / Seg→Cls / DETR-style), detailing outputs, pre- 447 

ferred use cases, key pros/cons, typical dental applications, and practical notes (e.g., calibration, class-imbalance han- 448 

dling). Read Table 8 alongside Figure 3 and report under imbalance with PR-AUC in addition to ROC-AUC, evaluated 449 

at a pre-specified specificity (e.g., ≥0.90) with sensitivity, PPV, and 95% CIs. 450 

Table 8. Task heads: output, when to prefer, pros/cons, and typical dental use  451 

(Families are representative, not exhaustive. Select according to data scale, resolution, and deployment constraints.) 452 

Head Output Prefer when… Pros Cons 
Typical dental 

use 
Notes 

Classifier 
Image/region 

label 

Screening; global 

status 

Simple; 

fast 
No location 

RGB multi-label; 

OPG screening 

Calibrate 

thresholds  

Detector 
Boxes + 

scores 

Focal lesions; tri-

age 

Localizes 

findings 

Misses 

shape 

Caries/periapical 

cues on BW/PA 

Focal loss helps 

[17]  

Segmenter 
Pixel/voxel 

mask 

Geometry/staging 

needed 

Precise 

extent 

Annotation 

cost 

Bone loss; peri-

apical masks 

Report 

Dice/IoU[18,19]  

Seg→Cls 
Mask fea-

tures → class 

Small/low-contrast 

lesions 

Boosts 

sensitivity 

Two-stage 

complexity 

Periapical radi-

olucencies 

Good for sub-

tle cues [9,12]  

DETR-style Set of objects 
End-to-end, fewer 

priors 

Clean de-

sign 
Data-hungry 

Panoramic mul-

ti-finding 

Longer training 

[39] 

Metrics note. For detection, add AP/mAP alongside PR-AUC; for classifiers, report PR-AUC and sensitivity/PPV at pre-specified 453 

specificity. 454 

4.3 Imbalance, thresholds, and calibration 455 

Under skew, we recommend treating PR-AUC as mandatory alongside ROC-AUC and pre-specifying a fixed 456 

specificity (e.g., ≥ 0.90) with sensitivity/PPV and 95% CIs, following TRIPOD+AI and standard imbalanced-data prac- 457 

tice [27,35]. Temperature scaling and reliability diagrams (ECE) turn scores into decision-useful probabilities [20]. For 458 

safety, adopt selective prediction to abstain on low-confidence cases [41]. 459 
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4.4 Interpretability and reader workflow  460 

Grad-CAM overlays guide plausibility checks and error curation; IG/SHAP add cohort-level insigh . Prospective 461 

reader studies are still sparse, but XAI panels are routinely requested by clinicians and can shorten adjudication in 462 

discordant cases when presented with structured summaries (per-tooth/per-region outputs) [42-44].  463 

4.5 Engineering for deployment  464 

Clinical viability requires disciplined engineering: pinned seeds/packages; saved configs; export to 465 

ONNX/TensorRT with FP16/INT8 as appropriate; batch-1 latency and memory footprint on target hardware; struc- 466 

tured outputs (DICOM-SR/JSON); model cards and a fail-closed/abstention policy [27][52] 467 

 468 

5. Challenges 469 

This section consolidates the principal barriers to reliable dental AI—data/label quality, class imbalance, domain 470 

shift, multimodal fusion, calibration/uncertainty, and clinician-usable explainability—and frames concrete safeguards 471 

for each. 472 

5.1 Data scarcity, label quality, and governance  473 

Multi-site, diverse datasets remain rare; label noise (e.g., subtle proximal caries) is common. Best practice: pa- 474 

tient-level splits, site/scanner stratification, ≥2 expert readers with blinded re-reads, and a clear hierarchical taxonomy; 475 

report κ for agreement [27].  476 

5.2 Class imbalance and clinically aligned operation 477 

Imbalance is the norm in dental imaging: Combine data-level remedies (minority oversampling + stronger aug- 478 

mentation) with loss-level choices (class-weighted CE, Focal Loss, and Unified Focal Loss for segmentation) [39]. Be- 479 

cause clinical adoption hinges on specificity-constrained operation, thresholds must be pre-specified on validation data 480 

(e.g., specificity ≥ 0.90) and results reported at those thresholds (sensitivity and PPV with 95% CIs), not only overall 481 

AUCs [17-19,35]. 482 

5.3 Domain shift and cross-site generalization 483 

Cross-site performance often drops due to device/protocol differences. Include external cohorts and site-wise re- 484 

porting; benchmark domain adaptation and test-time adaptation baselines (DANN, Deep CORAL, TENT) [46,43,47]. 485 

For CBCT, disclose MAR and its effect on intensity statistics [26]. 486 

5.4 Multimodal fusion pitfalls 487 

Fusion helps only with accurate registration and harmonized inputs. Enforce registration QA; analyze miss- 488 

ing-modality scenarios; ablate against single-modality baselines [30,42].  489 

5.5 Calibration, uncertainty, and selective prediction 490 

Modern networks are over-confident; apply temperature scaling; quantify ECE; explore ensembles or 491 

MC-dropout to enable risk-coverage curves and abstention [34,44].  492 

5.6 Explainability that clinicians can use 493 

Grad-CAM, Integrated Gradients, and SHAP assist plausibility checks and error triage but are not proof of cor- 494 

rectness [36–38,71,44]. Reader-friendly panels should align saliency with known radiologic signs and surface shortcut 495 

cues (acquisition markers, metal artifacts). 496 

5.7 Reproducibility and reporting 497 

Follow TRIPOD+AI: transparent splits; internal/external results; ROC-/PR-AUC; per-class precision/recall/F1; κ; 498 

Dice/IoU; calibration plots; 95% CIs; DeLong for correlated AUCs; decision thresholds; latency/memory [27,69].  499 

5.8 Privacy, fairness, and auditing 500 
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Federated learning requires audit trails (data curation, update logs, fairness checks); if using differential privacy, 501 

report (ε, δ) and the utility trade-off (e.g., ΔPR-AUC at fixed specificity). Publish subgroup metrics (age/sex/device/site) 502 

and discuss shortcut risks [67,68,70,44].  503 

 504 

6. Future Directions 505 

• Label-efficient learning at scale. Combine self-supervised pretraining with semi/weak supervision to reduce an- 506 

notation burden while improving recall and calibration across modalities [63]. 507 

• Routine shift-robustness. Make domain adaptation (DANN/Deep CORAL) and test-time adaptation (TENT) 508 

standard baselines; always include site-wise deltas on external cohorts [64,72,74]. 509 

• Calibration-first pipelines. Treat calibration and uncertainty as first-class outcomes — publish reliability dia- 510 

grams/ECE, Brier, and define abstention policies tuned on validation [34]. 511 

• Clinically usable fusion. Standardize CBCT↔IOS protocols (registration QA metrics, harmonization) and docu- 512 

ment MAR side-effects; evaluate against robust single-modality baselines [30,31,42]. 513 

• Reader/workflow studies. Move beyond retrospective metrics to prospective, multi-center reader studies tracking 514 

time-to-decision, discordant-case triage, and the utility of XAI overlays [44,70]. 515 

• Privacy-preserving collaboration with auditing. Develop federated frameworks with verifiable site-level audits 516 

(quality, fairness, drift) and quantify DP trade-offs on sensitivity at fixed specificity [67,68]. 517 

• Decision rules under constraints. Provide practical “when-to-use-what” guidance (conv vs. transformer; classifier 518 

vs. detector vs. segmentation vs. Seg→Cls) keyed to data scale, lesion size/contrast, FOV, and latency/memory 519 

budgets (§§2.5, 4). 520 

  521 

7. Recommendations (Actionable Checklist) 522 

In summary, we recommend: 523 

7.1 Data & labeling 524 

• Split at the patient level, stratify by site/scanner; include ≥ 1 external cohort [27,44]; 525 

• Publish a labeling protocol (taxonomy + decision rules) and an adjudication flow (≥2 experts; ≈10% blinded 526 

re-reads); report inter-rater κ; 527 

• When dense masks are costly, combine self-supervised pretraining with semi/weak supervision rather than 528 

shrinking scope. 529 

7.2 Objectives & metrics 530 

• Treat PR-AUC as mandatory alongside ROC-AUC for imbalanced problems. 531 

• Pre-specify thresholds on validation (e.g., specificity ≥ 0.90), then report sensitivity and PPV with 95% CIs at those 532 

fixed thresholds on internal and external tests. 533 

• Use task-appropriate metrics: mAP/AP (detection), Dice/IoU (segmentation), and per-class precision/recall/F1 534 

(classification). 535 

7.3 Calibration & uncertainty 536 

• Apply temperature scaling (or isotonic) and publish reliability diagrams with ECE (optionally Brier).  537 

• Define a selective-prediction policy (when to abstain) and quantify the risk–coverage trade-off. 538 

7.4 Shift robustness 539 

• Provide site-wise performance and cross-site deltas; where relevant, add domain adaptation or test-time adapta- 540 

tion baselines. 541 
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• For CBCT, document MAR usage and intensity harmonization and analyze their impact. 542 

7.5 Backbones & heads (fit to constraints) 543 

• Choose encoders/heads by data scale, lesion size/contrast, resolution, and latency/memory budget (see §4 tables).  544 

• Prefer Seg→Cls when small, low-contrast lesions are clinically critical. 545 

7.6 Explainability (XAI) 546 

• Provide clinician-readable panels (Grad-CAM / Integrated Gradients / SHAP), sanity checks, and failure galleries 547 

linking saliency to recognized radiologic signs. 548 

7.7 Engineering & deployment 549 

• Report batch-1 latency, memory footprint, and throughput at clinical resolution on target hardware. 550 

• Emit structured outputs (DICOM-SR/JSON) with per-tooth/per-region fields to ease PACS/RIS integration. 551 

• Release model cards (intended use, cohorts, thresholds, limitations) and document fail-closed/abstention behav- 552 

ior. 553 

• Pin seeds/packages, track configs; export for inference (ONNX/TensorRT; consider FP16/INT8). 554 

7.8 Privacy & fairness 555 

• In federated settings, define who audits site contributions, fairness, and drift; publish audit summaries. 556 

• If using differential privacy, report ε/δ and the performance impact at fixed specificity.  557 

7.9 Reproducibility & transparency (add) 558 

• Provide code and exact configs, dataset split manifests, and versioned model artifacts sufficient for third-party 559 

replication. 560 

• Align reporting with TRIPOD+AI items (checklist in supplement). 561 

7.10 Post-deployment monitoring (add) 562 

• Establish a plan for monitoring calibration and performance drift, periodic re-calibration, and subgroup audits; 563 

log abstentions and clinician overrides. 564 

7.11 Practical deployment rule 565 

If, after calibration, specificity-constrained targets on an external cohort are not achieved, the model must be de- 566 

ployed only as a second reader with selective abstention—never as an autonomous gatekeeper. Promotion to auton- 567 

omous use should occur only after the model meets and sustains those externally validated, specificity-constrained 568 

targets under post-deployment monitoring. 569 

 570 

8. Conclusion 571 

This review synthesizes DL methods for assessing dental anomalies and diseases across intraoral RGB, BW/PA 572 

radiographs, panoramic OPG, and 3D CBCT/IOS, emphasizing modality-aware preprocessing, imbalance-aware ob- 573 

jectives, and calibration as prerequisites for decision-useful AI. Compared with prior surveys, we center clinically 574 

constrained operation—pre-specified, high-specificity thresholds with calibrated probabilities and selective absten- 575 

tion—alongside engineering artifacts (latency, memory) and structured outputs for integration. Persistent gaps include 576 

small single-center datasets, limited cross-site robustness, under-reported calibration/uncertainty, and scarce prospec- 577 

tive reader/workflow studies. Moving forward, label-efficient learning, routine shift-robustness baselines, and feder- 578 

ated, auditable collaboration are essential. Critically, site-stratified external validation should be a gating criterion be- 579 

fore deployment. With these guardrails, dental AI can progress from retrospective promise to dependable, safe- 580 

ty-preserving and workload-reducing support that augments—rather than replaces—expert judgment. 581 

 582 
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