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Abstract

Oral anomalies and dental diseases affect billions of people worldwide, yet diagnosis
often relies on manual interpretation of radiographs and clinical images, which is time-
consuming and prone to variability. Advances in deep learning (DL) have opened new
opportunities for accurate, efficient, and scalable dental diagnostics. This review examines
state-of-the-art DL frameworks applied to dental imaging modalities, including intraoral
RGB photographs, bitewing and periapical radiographs, panoramic radiography, and
cone-beam computed tomography (CBCT). The analysis covers preprocessing pipelines,
backbone architectures (convolutional neural networks and vision transformers), task
designs (classification, detection, segmentation, hybrid models), and strategies for
addressing data imbalance, calibration, and uncertainty. Findings reveal that modality-
specific preprocessing enhances reliability, hybrid CNN-Transformer models improve
performance for wide-field or complex tasks, and segmentation-assisted classification
increases sensitivity to subtle lesions. Moreover, calibrated probability outputs, robust
evaluation metrics (ROC-AUC, PR-AUC), and external validation are essential for clinical
readiness. The review identifies critical gaps—limited cross-site generalization, under-
reported calibration, and scarce real-world validation—and outlines future directions
such as label-efficient learning, federated training, and calibration-first pipelines. With
these safeguards, DL-based systems can evolve from experimental tools to trustworthy
clinical aids that strengthen diagnostic accuracy and decision support in dentistry.

Keywords: Dental imaging; deep learning; convolutional neural networks (CNNs); vision
transformers (ViT); Class imbalance; probability calibration.

Oral and dental health is a vital component of overall well-being, yet dental anomalies and oral diseases remain

among the most prevalent chronic conditions worldwide. Approximately 3.5 billion people are affected, with the
burden driven primarily by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion) [1,2]. When
untreated, these conditions lead to pain, infection, tooth loss, and systemic complications that impair nutrition, speech,

and quality of life; the burden is amplified in low- and middle-income countries where preventive services and

advanced diagnostics are limited [1]. Traditional diagnosis relies on clinical assessment and manual interpretation of

radiographs, which is time-consuming, subjective, and prone to inter-observer variability; overlapping anatomy, image

noise, and early lesions further complicate detection [3].
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Against this backdrop, artificial intelligence (AI)—particularly deep learning (DL)—has accelerated progress in
medical image analysis, including transformer-based vision models such as ViT and Swin that capture long-range
context [4,5]. In dentistry, preliminary work demonstrates Al on panoramic radiographs for multi-condition screening
[6], while broader surveys of medical imaging emphasize scalable, data-efficient pipelines that transfer to clinical tasks
[7,8].The evidence base spans panoramic staging/measurement on OPG [9,10], multi-label screening from intraoral RGB
photographs [11,12], and three-dimensional analyses using CBCT and CBCT-IOS fusion to enrich anatomical context
[13,14]. Persistent methodological gaps remain [7] highlights the need for transparent intended-use claims, external
testing, and pre-specified operating points, alongside evaluation under class imbalance where PR-AUC complements
ROC-AUC to reflect clinically meaningful decision thresholds [7].

Gap and novelty: Previous reviews have not consistently addressed probability calibration, explainability, and
deployment readiness across all major dental imaging modalities. This review targets that gap by integrating: (i)
modality-aware preprocessing and class-imbalance remedies; (ii) calibrated, threshold-ready probabilities (ECE,
reliability diagrams) reported at clinically constrained operating points; and (iii) deployment artifacts (latency, memory
footprint, structured outputs) together with external, site-stratified validation aligned with contemporary reporting
guidance.

Objectives: This review aims to:

1. compare CNN and transformer frameworks across dental modalities and tasks.

2. consolidate imbalance-aware objectives and calibration metrics (PR-AUC, Cohen’s k, ECE, reliability diagrams)
with clinically meaningful operating points.

3. Summarize deployment and reporting practices, including external validation, efficiency reporting, and
integration into clinical systems.
Organization of the paper :Section 2 provides background and the theoretical framework; Section 3 reviews the
literature by modality and task; Section 4 analyzes model choices and trade-offs; Section 5 outlines challenges; Section
6 describes future directions; Section 7 presents actionable recommendations; and Section 8 concludes.

2. Background and Theoretical Framework

2.1 Machine Learning (ML): a concise orientation

Machine learning (ML) studies algorithms that improve at a task through experience (data) rather than hand-
written rules. Instead of prescribing decision logic, we provide examples and let the model infer patterns that map
inputs to outputs.

Core idea: ML assumes useful regularities exist in the data and seeks to approximate the unknown function that
generated them. The central challenge is generalization—performing well on new cases, not only on the training
examples.

Data, features, and representations: Classic ML relied on human-designed features; modern approaches
increasingly learn representations directly from raw inputs (via deep models or self-supervised objectives), reducing
manual engineering [7,8].

Model families (high level): Linear models (logistic/linear regression): simple, interpretable baselines; effective with
near-linear relations or limited data;

Kernel methods (SVM, Gaussian processes): capture non-linear structure via similarity functions; Tree ensembles
(Random Forests, Gradient Boosting): robust to mixed types/outliers; strong tabular baselines; Neural networks (feed-
forward, CNNs, Transformers): flexible function approximators that scale with data and compute.

Why ML works well now: The confluence of three reinforcing trends— (1) larger datasets, (2) more compute, and
(3) better algorithms (optimization, architectures, regularization) —has enabled rich, transferable representations across
vision, language, and structured data.

2.2 Deep Learning (DL): encoders, tasks, and objectives

Deep learning (DL) is a branch of ML that uses multi-layer neural networks to learn complex functions directly
from raw data, with hierarchical features learned end-to-end [7]. Training adjusts weights to minimize a loss via
backpropagation and stochastic gradient methods (e.g., SGD, AdamW).
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2.2.1 Key backbones

CNNs (VGG, ResNet, DenseNet, Inception/Xception, EfficientNet, MobileNet, ConvNeXt/RegNet): exploit local
patterns; strong for images; compute-efficient and data-friendly; Representative references appear in §2.5.1. Vision
Transformers (ViT, Swin): self-attention captures long-range context; well-suited to wide-field or high-resolution
inputs; typically benefit from stronger pretraining [4,5].

2.2.2 Task heads

Classification (image/ROI label) for fast screening; Detection (bounding boxes) for focal findings; Segmentation
(pixel/voxel masks) when geometry/staging matters; Seg—Cls (segmentation-assisted classification) to boost sensitivity
for subtle, small targets.

2.2.3 Training essentials

Optimization/regularization: SGD/AdamW, residual connections, normalization, dropout, weight decay, and data
augmentation (e.g., flips/rotations, MixUp, CutMix) [15,16]; Losses under imbalance: class-weighted cross-entropy,
Focal Loss for classification/detection[17], Dice/loU-aware losses (e.g., Focal-Tversky and Generalized Dice for
segmentation[18,19]; Calibration: temperature scaling with reliability diagrams/ECE for decision-useful
probabilities[20]. Evaluation & robustness: Use ROC-AUC and PR-AUC under skew; report sensitivity/specificity at
clinically fixed thresholds with confidence intervals. Prevent leakage with subject/site-level splits. Self-/semi-supervised
pretraining and careful augmentation improve cross-site transfer [8, 40].

2.3 Clinical Overview of Dental Anomalies and Oral Diseases

Global burden: Oral diseases are among the most common non-communicable conditions worldwide (~3.5 billion
affected), driven mainly by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion). Consequences
include pain, infection, tooth loss, and impaired nutrition, speech, and quality of life—especially in underserved settings
[1,2].

Routine diagnosis: Clinical examination plus radiographic interpretation remains standard, yet early or subtle
lesions (e.g., proximal caries, incipient periapical radiolucencies) are frequently missed, and inter-observer variability
reduces reliability [3]. Imaging adds modality-specific cues: bitewings (interproximal enamel-dentin changes),
periapicals (apical radiolucency), OPG (jaw-wide screening), CBCT (3D tooth-bone anatomy), and intraoral RGB
(color/texture) [11] Representative appearances are shown in Figure 1, and clinical targets are mapped to modality and
deep-learning (DL) task types in Table 1.

Brief disease primers (diagnostic signatures): Dental caries: enamel-dentin radiolucency; bitewings preferred for
proximal lesions; conservative contrast handling preserves faint signals [21,22]; Gingivitis & calculus:
erythema/edema and mineralized plaque; in RGB, white balance and ROI-centric framing stabilize color cues [11];
Periodontitis: crestal bone-level reduction and angular defects; measurement/segmentation on BW/OPG with stage-
aware reporting [9,10]; Periapical lesions: apical radiolucency =+ cortical disruption; PA first, CBCT for 3D extent;
Seg—Cls can improve sensitivity for small lesions [13,24] ; Tooth wear/erosion: glossy facets, enamel loss, cupping;
standardized RGB capture mitigates illumination bias [11]; Oral mucosal ulcers: shallow ulcer base with erythematous
halo and fibrin slough; careful annotation required due to visual variability [11].

Figure 1. Representative findings across modalities (clinical montage): (A) intraoral RGB; (B) PA/BW radiographs; (C)
OPG; (D) CBCT/IOS.
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Table 1. Clinical targets mapped to primary imaging modality, radiologic signature, DL head(s), and Representative studies

R tati
Condition Primary modality Typical signature DL task focus epreser.l amve
studies
Proximal /occlusal . . L. Enamel-dentin Classification/ [22], [3]
. Bitewing /Periapical ) .
caries radiolucency Detection
Crestal bone-level 9], [10
Periodontitis (bone . . res a. one-leve Measurement / 91, 1101
Bitewing / OPG reduction; angular .
loss) Segmentation
defects
Apical radiol ; Detection + 13],126
Periapical lesion Periapical / CBCT plc.a ra ,10 uce.n cy erec 1011. [13]126]
cortical disruption Segmentation
1 facets; 11
- Glossy wear facets; Grading / [11]
Tooth wear / erosion Intraoral RGB enamel loss; o
. Classification
cupping
Developm'ental OPG / CBCT Miss'ing/ext.ra teeth; Mul.ti.-lab.el [6], [3]
anomalies impactions classification
M 1 11
in fla;::)lesx:ion / Intraoral RGB Redness; ulcer base; Lesion localization / [11]

ulcers

fibrin slough

Classification

! Note: OPG = orthopantomogram (panoramic radiograph); CBCT = cone-beam computed tomography; RGB = intraoral color

imaging; DL = deep learning. “Typical signature” items are illustrative and may vary by exposure/positioning.

2.4 Imaging Modalities & Al Relevance

Modality-aware design: Tailor preprocessing and model choices to each modality’s physics/geometry to
preserve faint cues and avoid anatomical distortion [3].

The main practical points are:

e Intraoral RGB: white-balance/color-constancy — mild photometric jitter; ROI cropping; bounded augmentation
[25]. see the preprocessing block in Figure 2.

®  Periapical/OPG: conservative contrast (mild CLAHE/gamma), small affine transforms; avoid heavy blur that

suppresses subtle radiolucencies [3]; key cautions are listed in Table 2;

¢ CBCT/IOS: isotropic resampling and intensity harmonization; MAR when appropriate (document potential
intensity shifts); strict registration QA for CBCT «<IOS fusion[26]; the Seg—Cls variant is sketched in Figure 3.

Intra- oral Panoramic Periapical CBCT
v
[ Image Preprocessing ]
A4
CNN J Explainability
| (Grad-CAM)
‘ A
[ Ensemble ’ ‘ Cross-Validation ]
Learning
= T —|
| Disease

[ Uncertainty Estimation

J

”  Classification

Reliability—aware deep-learning DL pipeline

Figure 2. Reliability-aware workflow: preprocessing — encoder (CNN/Transformer) — uncertainty — calibration (ECE)

— fixed operating points
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Feature Riegion
Image enhancement Estraction ) Proposals
St Edge Cropping ROI Align
Input image Data Augmentation Disease Mask
(224%224%3) Detection Generation
Input Data Data pre-processing Dental Disease Diagnosis

Figure 3. Segmentation-assisted pipeline (Seg—Cls): enhancement/cropping/augmentation — feature backbone —

proposals/masks — calibrated decision with Grad-CAM overlays.

Table 2. Modalities, typical DL tasks, advantages/limitations, and practical notes.

Modality Typical tasks Advantages Limitations Practical notes
Apply white-bal
Caries, calculus, Rich color IlIlumination/ pply white-balance
. and color-constancy;
Intraoral RGB mucosal lesions, /texture; low specular glare;
discoloration cost ose variabilit crop to ROT; use
P y bounded color jitter.
. . Prefer conservative
Apical lesions; . . .
.. ) High Sensitivity to contrast operations (e.g.,
Periapical endodontic status; ) L .
. root/detail projection mild local contrast);
radiograph per-tooth ) )
resolution geometry avoid heavy blur; small
assessment ]
affine only.
Overlap; . . .
o . . Good . Minor rotations/affine
Bitewing Proximal caries; . . horizontal
) interproximal . only; document
radiograph crestal bone levels e ey e angulation )
visibility alignment protocol.
errors
. . . Use multi-scale
Occlusal Impactions; Wide occlusal ~ Lower in-plane
. . . . encoders; moderate
radiograph supernumeraries field resolution ) )
input size.
Panoramic Mul-ti-finding | Global jaw Mai;nif(ilc.a:iortl'; Multi-s;ale/long—frarge
screening; anoma overlap/distortio 2
(OPG/DPR) ering; anomaly context P encoders; caretu’
mining; staging n grayscale normalization.
K int/ tati
Cephalometric  Skeletal relations; Standardized Landmark e?rpoll-n s.e.grren atlon
(lateral/PA) landmarking projections variability pipe .mes, rtetrrater
consistency checks.
Isotropi ling;
Implants, True Dose; metal SOMOpIC Tesamp ing;
. . MAR when needed;
CBCT (3D) pathology, root volumetric artifacts; voxel . . o
. . intensity harmonization
morphology anatomy size variance
across scans.
Smooth meshes;
ioid/non-rigid
I0S 3D Occlusion; aligners; Accurate No internal 1:1g1 -non T8t
. registration QA; fuse
surface) surface fusion dental surfaces anatomy . .
with CBCT/OPG if
available.
Limited FoV; ) . .
Earl Non-ionizing; device Device calibration;
NILT/QLE/ caries/pla ze/cracks uantitative/f availability; dimensionality
OCT / HSI > plaquert d P Ty reduction; patch-based
; tissue typing ectral high
. . . local 3D nets
dimensionality
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’Notes: ROI = region of interest; BW = bitewing; PA = periapical; OPG/DPR = panoramic radiography; CBCT = cone-
beam computed tomography; IOS = intraoral surface scan; NILT = near-infrared light transillumination; QLF =
quantitative light-induced fluorescence; OCT = optical coherence tomography; HSI = hyperspectral imaging; MAR =
metal-artifact reduction; FoV =field of view. “Conservative contrast operations” = mild local contrast adjustments (e.g.,
CLAHE with gentle gamma) that preserve faint radiolucencies; “intensity harmonization” = matching intensity ranges
across scanners/exams.

2.5 CNN/Transformer Families & Heads

Scope: This section summarizes widely used image encoders (classic CNNs, modern convnets, vision transformers)
and links them to task heads (classification, detection, segmentation, Seg—Cls) that recur across dental imaging. The
goal is a practical “when to use what” map tied to data scale, lesion size/contrast, field-of-view, and deployment
constraints. Figures 2-3 visualize the surrounding workflow choices; Tables 34 give side-by-side comparisons.

2.5.1 Convolutional encoders (representative families)

Convolutional encoders (CNNs) are a practical default for dental imaging because they capture local textures and
edges, run efficiently on common hardware, and transfer well from ImageNet. With limited or imbalanced datasets —
typical in dentistry —CNN backbones often deliver strong, stable baselines for periapical, bitewing, and panoramic
tasks. Use them when latency/memory matter or when global long-range context is not the primary bottleneck.

e ResNet-50. Residual skips stabilize deep training and transfer well; a dependable default for periapical/OPG classifiers and
detectors. On small single-center sets, tighten regularization and calibrate probabilities to curb overfitting [27,20];

e VGG-16. Deep stacks of 3x3 convs with a large FC head; stable transfer features but heavy (~138 M params).
Mostly a baseline now when memory permits [28];

e  DenseNet-121. Dense connections encourage feature reuse and strong gradients with good parameter efficiency;
watch activation memory during training [29]

e InceptionV3 / Xception. Multi-scale (factorized) convs and auxiliary heads capture wide-field context useful for
OPG,; prefer 22992 inputs; Xception's depthwise separables are parameter-efficient [30,31];

e  MobileNetV2/V3. Inverted residuals and NAS/SE refinements suit edge-class latency/power budgets
(chairside/handheld). Report ECE and apply temperature scaling before fixing clinical thresholds;

o  EfficientNet / EfficientNetV2. Compound scaling offers strong accuracy-efficiency; BO-B3 reliable on
RGB/periapicals; larger variants need careful input sizing and memory planning [32,33]

e  ConvNeXt/RegNet. “Modern conv” designs that match transformer-level accuracy with predictable compute;
check batch-1 latency for high-res OPG multi-finding and pick RegNetX/Y to meet millisecond budgets [34-36].

2.5.2 Vision transformers (global-context encoders)
Unlike CNNs, vision transformers use self-attention to capture long-range context across patches

e ViT: Global self-attention over patch tokens; excellent long-range context but benefits from large pretraining or
strong regularization on smaller dental datasets [4];

®  Swin Transformer: Shifted-window attention yields hierarchical, high-resolution features well suited to
detection/segmentation on OPG and 3D; typically more data-efficient than vanilla ViT in medical imaging [5].
Rule of thumb: Prefer convnets (ResNet/DenseNet/EfficientNet) for limited data, high-SNR radiographs, and tight

latency; consider Swin/hybrids when long-range context is essential (panoramic, large-FoV, multi-finding) and compute

allows.

2.5.3 Task heads and their clinical fit

®  (lassification (image/ROI label). Best for screening/global status; simple and fast but no localization. Pair with
calibrated thresholds for triage [20,41];

*  Object detection (boxes + scores). Targets focal findings (e.g., proximal caries, periapical cues). Focal Loss helps
with class/anchor imbalance [17].

*  Segmentation (pixel/voxel masks). Needed when geometry matters (bone-loss measurement, lesion extent).
Combine CE with Dice/loU-aware losses; Focal-Tversky can boost small-structure sensitivity [18,19];
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*  Seg—Cls (segmentation-assisted classification). Two-stage (masks — region features — final class) improves
sensitivity to small/low-contrast lesions and supports Grad-CAM overlays; useful for subtle periapical pathology
[9,12];

e  DETR-style detectors. End-to-end set prediction with fewer hand-tuned priors; clean design but comparatively
data-hungry and slower to converge [37].

2.5.4 Data augmentation — task/modality-aware recipes

Good augmentation in dental imaging should stay anatomically plausible and respect imaging physics. The goal
is to boost generalization without washing out subtle diagnostic cues (e.g., faint interproximal radiolucencies or mild
mucosal erythema). Below are conservative, low-risk defaults by modality and task. Parameters are deliberately modest;
push them further only if you can justify with ablations and visual spot-checks[38].

General principles (apply everywhere)
1. Keep geometry believable. Use small rotations/translations/scale to avoid unrealistic tooth/bone deformation.

2. Protect diagnostic signal. Avoid heavy blur/sharpen and extreme photometric shifts that could hide early caries or
apical changes.

3. Match real-world variability. Use site/device-aware photometrics (e.g., color constancy for RGB; gentle local
contrast for X-ray) to mimic clinical capture differences].

4. Prevent leakage & document settings. Augment after patient-level splitting with site/scanner stratification; report
exact operators/ranges; calibrate probabilities (reliability diagrams/ECE) before fixing thresholds.

(A) Radiographs (BW/PA/OPG)

*  Geometry: rotations =+3-5°, tiny translations (<3%), scale 0.97-1.03; horizontal flip only when left-right
symmetry is clinically acceptable.

¢  Photometrics: mild local contrast (e.g., CLAHE clip 1.0-2.0; 8x8 grid) or gentle gamma =0.9-1.1 to counter
exposure variability without over-enhancing edges.

¢ Notes: stay conservative to preserve faint proximal radiolucencies and apical signs; for OPG, pair with careful
grayscale normalization.

(B) Intraoral RGB photographs

*  Color pre-normalization: white balance or color-constancy (e.g., Gray-World/Shades-of-Gray) to reduce
device/lighting drift.

e  Framing: ROI-centric random crops (scale 0.85-1.00; aspect #0.9-1.1) to maintain tooth/gingival context.
e  Conservative jitter: brightness +0.10-0.18, contrast +0.08-0.15, saturation +0.10-0.20, hue +5-10°, gamma 0.9-1.1.

*  Avoid: strong blur/sharpen or aggressive color shifts that might mask enamel discoloration or mucosal erythema
[3,24,25].

(C) CBCT volumes and CBCT«IOS fusion

¢ Resampling & geometry: isotropic resampling to a clinically appropriate voxel size before augmentation; small
3D rotations ~+5-10° and scale ~+5% only.

* Intensity handling: site/scanner harmonization; if metal-artifact reduction (MAR) is used, document parameters
and audit downstream impact because MAR changes intensity statistics.

e  Fusion: enforce QA for CBCT+IOS registration and report alignment metrics/failure modes [23,24].
(D) Detection and segmentation heads
*  Sampling: class- and ROI-balanced crops/patches to counter foreground sparsity (anchors/proposals).

¢ Deformations: small affine/elastic only; avoid shape warps that would invalidate measurement tasks (e.g., bone-
loss staging).

¢ Loss coupling: use Focal Loss for detection, and Generalized Dice or Focal-Tversky for imbalanced/small masks
in segmentation [17-19].
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(E) Mix-based regularizers (use sparingly)

e MixUp/CutMix: helpful on small, heterogeneous cohorts to stabilize decision boundaries; keep strengths modest
(typical a=0.2-0.4; CutMix probability <0.2) so you don’t wash out faint signals [15,16,21]

¢  CoarseDropout: a single small hole (<24-32 px in 2D) at low probability to encourage robustness without erasing
key anatomy.

(F) Reporting, calibration, and safeguards

¢ Qualitative verification: include a montage of augmented samples per modality (in the supplement) to visually
confirm plausibility;
*  Ablations: report no-aug vs proposed-aug; under class imbalance, include PR-AUC alongside ROC-AUC, and

report sensitivity/PPV at pre-specified specificity (e.g., 20.90) with 95% Cls [7,27];

e (Calibration: augmentation may cut variance but does not guarantee calibrated probabilities; apply temperature

scaling and report reliability diagrams/ECE before fixing clinical thresholds[ 20].

Take-home: Prefer small, physics-respecting transforms tuned to each modality and task. For radiographs,
emphasize conservative contrast and minimal geometry; for RGB, stabilize color; for CBCT, prioritize
resampling/harmonization and registration QA. Couple these recipes with imbalance-aware losses, calibration, and
transparent reporting to achieve clinically meaningful, reproducible gains[37].

2.5.5 Choosing encoders and heads — practical guidance

Selecting a backbone and prediction head should reflect the task (classification, detection, segmentation), dataset
scale/imbalance, and deployment constraints. The checklist below summarizes pragmatic defaults and reporting
practices. Pick the backbone/head to match task, data scale/imbalance, and deployment limits.

e Small, imbalanced datasets: ResNet-50, DenseNet-121, or EfficientNet-B0/B3; class-aware training (class weights or
Focal) with mild label smoothing; avoid double-weighting; calibrate with temperature scaling; report PR-AUC and
sensitivity/PPV at fixed specificity (>0.90) with 95% ClIs; include a small external test when available [27,32, 20].

o  Wide-field OPG: InceptionV3, ConvNeXt, or Swin with detection/segmentation heads; many tasks are multi-label —
use BCE/Focal-BCE and report mAP/AP and macro-F1; measure throughput and batch-1 latency at clinical
resolution [31,34,5].

e Subtle, small, low-contrast lesions: segmentation or Seg—Cls; consider Focal-Tversky/unified-focal; gentle CLAHE
can help —quantify on validation [18,25].

e Edge (chairside): efficient backbones (EfficientNet-B0/B3 or compact variants); plan pruning and INT8 quantization;
profile batch-1 latency/memory/power; assess calibration (ECE) before locking thresholds [32, 20].

e 3D CBCT & fusion: Swin or hybrid pyramids feeding 3D/2.5D segmenters; document MAR, intensity
harmonization, and resampling; validate registration (TRE, HD95/Chamfer) and report timing/memory [23, 26].
Reporting & calibration (all): Compute ECE with reliability diagrams; fix thresholds on validation, then report
sensitivity/PPV (or mAP for detection, Dice/IoU for segmentation) with 95% ClIs on internal/external tests. Include
runtime, memory, and —when relevant—energy at clinical resolution [20,41].

Table 3. Encoder families— core idea, strengths/limits, typical dental fit, key refs.

Family Core idea Strengths Limitations Typical dental fit Key
refs
ResNet-50 Residual skips  Stable transfer, Can overfit Periapical/OPG [27]
robust small cohorts classifiers & detectors
DenseNet-121 Dense reuse  Param-efficient Activation Radiographs with [30]
memory limited data
InceptionV3/Xception Factorized Multi-scale Prefers 22992 Wide-field OPG [31,32]
convs context inputs
EfficientNet-B0/B3 Compound Strong acc- Larger variants RGBY/ periapical, [33,34]

scaling efficiency need care screening
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Mobile-friendly Inverted Edge Capacity limits Chairside/handheld [32]
CNNs residuals latency/power
ConvNeXt/RegNet Modern conv Transformer- Check batch-1 OPG multi-finding [34-36]
design level acc. latency
ViT/Swin Self-attention Global context Data/pretrain OPG/3D; detection/seg [4,5]
hungry

Table 4. Task heads and when to use them.

Head Output Prefer when Pros Cons Dental use Refs
Classifier Image/ROI label Screening/ Simple, fast No RGB multi-label; [7,28]
localization OPG screening.
Detector Boxes + scores Focal Localizes Misses Caries/periapicalon  [37]
lesions / shape BW/PA.
triage
Segmenter Pixel/voxel mask Geometry / Precise Annotation Bone loss; lesion [19,18]
staging extent cost masks.
Seg—Cls Mask—features—class Small/low- Boosts Two-stage Periapical [9,12]
contrast sensitivity radiolucencies.
DETR- Set of objects Fewer Clean Data- OPG multi-finding [39]
style priors design hungry

2.6 Class Imbalance and Probability Calibration

Why imbalance matters: Dental datasets are typically skewed (many healthy/mild cases, fewer severe or rare
conditions). Under skew, models can look “good” on accuracy while failing to detect minority classes. Two levers are
used together: (A) data-level rebalancing and (B) loss-/threshold-level reweighting.

(A) Data-level rebalancing: Stratified k-fold and patient-level splits keep prevalence consistent and prevent
leakage across views of the same subject; Class-aware sampling / minority oversampling paired with stronger
augmentation for rare classes (e.g., MixUp, CutMix, careful photometric/affine; Albumentations) helps reduce
variance without memorizing artifacts; For detection/segmentation, hard-example mining and patch/ROI balancing
reduce anchor/foreground sparsity.

(B) Losses, smoothing, and thresholds: Class-weighted CE or Focal for skewed classification;
Focal-Tversky/Generalized Dice for tiny/sparse masks; mild label smoothing can temper over-confidence on small,
heterogeneous sets [17-19]. Fix operating thresholds on the validation set, then report sensitivity and PPV at a pre-
specified specificity (e.g., = 0.90) with 95% confidence intervals [41].

Calibration for decision-useful probabilities: Neural networks are often mis-calibrated (over-confident).
Temperature scaling is a simple, effective post-hoc method to reduce ECE, and reliability diagrams plus the Brier score
communicate probability trustworthiness. For safety-critical use, adopt selective prediction (abstain under low
confidence) to trade coverage for risk [20,40].

Table 5. Class-imbalance remedies at a glance.

Lever What it does Prefer when... Caveats Refs
Class-aware Risk of overfitting
K L. Increases rare-class Severe skew; small .
sampling / minority without strong [21,38]
} exposure per epoch datasets .
oversampling augmentation
Regularizes decision Tune mix ratios;
MixUp / CutMix 5 Limited labels; .
. boundary; combats preserve faint [15,16,21]
(with standard aug) heterogeneous capture

label noise radiolucencies on X-ray
Class-weighted CE Penalizes minority Any skew,: simple Can still.be over- [17]
errors more baseline confident
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Down-weight
OWR-WEIBHIS €45 Detection/cls. with many  Tune vy and o; watch

Focal Loss (cls.) negatives; focuses on . [17]
.. negatives convergence
hard positives
Unified-Focal / Focal- Emphasizes Tiny lesions; bone-loss Balance with Dice/CE [18,19]
Tversky (seg.) small/sparse masks edges for stability !
R -
. efluces over. Small/heterogeneous Too much can blur
Label smoothing confidence, noise e e . [30]
L labels minority signals
sensitivity
Thresholds at fixed Clinically aligned Screening/triage Must be set on [41]
specificity operation workflows validation, then locked
Temperature scaling Calibrates Re-tune if distribution
Before depl t 2
+ ECE probabilities erore deproymen shifts [20]

2.7 Explainability and Multimodal Fusion

Explainability (XAI): what it is—and is not. Post-hoc methods help clinicians judge plausibility (did the model look
at the right place?) and curate error galleries; they do not guarantee correctness. Use multiple views and sanity checks,
and interpret XAl alongside metrics and external validation [41-43]

Figure 4 illustrates the Grad-CAM pipeline used in this review —covering target-layer selection, heat-map
computation, and upsampling/overlay —and serves as a reference for the plausibility panels reported later.

Grad-CAM pipeline for dental
lesion classification

© input

@ select target layer
& compute Grad-CAM

[

Fheatmap
Iow importance hlgh

9 upsample & overlay heatmap

Figure 4. Schematic of the Grad-CAM workflow used in this review: (1) select the target convolutional layer; (2) compute
class-discriminative gradients and weight the feature maps; (3) up-sample and overlay the heat map on the input image
for clinician-readable plausibility checks [43].

1. Common tools:

e  Grad-CAM: fast class-discriminative heatmaps—good for plausibility overlays and quick QA; layer-dependent
and resolution-limited [41];

e Integrated Gradients: axiomatic attributions; useful for aggregated trends; sensitive to baseline choice[42];

e  SHAP: consistent feature contributions; informative cohort-level analysis; computationally heavier[43]

Table 6. Popular XAI methods.

Method Strengths Limitations Dental use cases Refs
Layer/resoluti Lesi lausibility; fail
Grad-CAM Fast, intuitive overlays ayerresotution esionp aus.l Ty, tature [41]
dependent analysis panels
Integrated Axiomatic, path integrated Baseline choice Aggregate attribution trends 42
Gradients ‘P & sensitivity BEres [42]

Consistent local »global Cohort-level factor analysis,

SHAP Compute cost [43]

contributions reader studies
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2. Multimodal fusion (OPG/PA/CBCT-IOS): Early fusion (with reliable registration) exploits complementary cues;
late/attention fusion is safer when modalities are heterogeneous or missing. For CBCT-IOS, enforce registration
QA, isotropic resampling, and intensity harmonization; if MAR is applied, document potential intensity shifts
and audit downstream bias [23,26]. Include ablations vs. single-modality baselines and report site/scanner-wise
results [27].

2.8  Evaluation and Reporting

2.8.1 Data splits and leakage prevention
Use patient-level splits with site/scanner stratification; never allow multiple images from the same patient to
cross train/validation/test. Include at least one external test cohort to quantify distribution shift [27].

2.8.2 Metrics under class imbalance

e  C(lassifiers: ROC-AUC + PR-AUC; per-class precision/recall/F1; report sensitivity/PPV at a fixed specificity (e.g., >
0.90) with 95% Cls[40];

e  Detectors: AP/mAP at relevant IoU thresholds; baselines include Faster R-CNN and DETR; see dental exemplars
in §3 and Table 7 [37,39];

e  Segmenters: Dice and IoU, with small-structure analyses (e.g., per-tooth bone-loss edges) [18,19];
e  (Calibration: reliability diagrams, ECE, optionally Brier; apply temperature scaling before fixing thresholds [20].

2.8.3 Statistical testing and uncertainty

Use patient-level bootstrapping to derive confidence intervals (Cls) and paired tests for matched designs. Quantify
predictive uncertainty —e.g., Monte-Carlo Dropout—to enable selective prediction and risk—coverage analyses, so low-
confidence cases can be flagged or deferred [44].

Generalization and shift robustness:
Report site-wise performance and cross-site deltas. When target labels are unavailable, benchmark unsupervised
domain adaptation (DANN; Deep CORAL) [45] and test-time adaptation (TENT) as robustness baselines [46],[47].
Document any preprocessing that alters intensity statistics—such as metal-artifact reduction (MAR) in CBCT—and
analyze downstream impact [26].

2.8.4 Computational efficiency and deployment artifacts.
Provide batch-1 latency and memory footprint on intended hardware, plus throughput at clinical resolution.
Release structured outputs (DICOM-SR/JSON) and frozen thresholds for audits and PACS/RIS integration.

2.8.5 Ethics, privacy, and fairness (brief).

Favor multi-site collaboration —including federated training —to expand diversity without centralizing PHI, and
preserve site-level audit trails to enable accountability. When privacy-enhancing technologies are used, report formal
parameters (e.g., (¢,0) (\varepsilon, \delta) (¢,0) for differential privacy) alongside the measurable utility impact at
clinically relevant operating points. Finally, publish subgroup audits (age/sex/device/site) and probe for shortcut
learning (e.g., acquisition markers, metal artifacts) to ensure equitable and robust performance across populations.

3. Literature Review and Critical Analysis

This review synthesizes evidence by modality (intraoral RGB; panoramic radiography OPG/DPR;
periapical/bitewing; 3D CBCT and CBCT-IOS fusion) and by task design (classification, detection, segmentation,
Seg—Cls). We prioritize studies reporting explicit metrics and clinically interpretable operating points, with thresholds
pre-specified on validation and results summarized at those operating points (e.g., specificity > 0.90 with sensitivity/PPV
and 95% Cls) per contemporary reporting guidance [40].

3.1 Intraoral RGB (screening, grading, tele-dentistry)

Across standardized photo capture, multi-label screening and targeted grading are consistently feasible.
Preprocessing typically combines white-balance or color constancy with bounded photometric jitter and ROI-centric
crops. Mix-style regularizers appear when labels are limited. Lightweight backbones dominate for accuracy—efficiency,
and several works add saliency to aid plausibility review.
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Representative evidence includes early gingivitis detection from intraoral photos using CNN/detector pipelines
[12], broad multi-label screening at the image level with explicit macro-F1/PR-AUC reporting [11], and condition-
specific grading of tooth wear with high agreement.

Further, lightweight ensembles (VGG/MobileNet/Inception) achieve strong internal accuracy at low latency, while
fuzzy rank-based ensembles with uncertainty targeting heterogeneous capture report robust performance on public
sets. Chairside-oriented MobileNetV2 models augmented with Grad-CAM illustrate edge-efficient inference and
clinician-readable overlays. A comparative transfer-learning benchmark focused on dental disease classification helps
position backbone trade-offs specifically for RGB tasks [48].Representative RGB studies and their key outcomes are
summarized in Table 7.

3.2 Panoramic radiographs (OPG/DPR): multi-finding screening and staging

OPG offers jaw-wide context but is sensitive to magnification and overlap. Baseline screeners underscore the value
of careful grayscale normalization and multi-scale context [6]. Staging studies align predictions to clinical definitions
and increasingly emphasize calibrated operating points and external cohorts as the logical next step [10],[18].
Architecturally, modern convnets (e.g., ConvNeXt) and attention models (e.g., Swin) capture long-range structure at
higher input resolutions; hybrid CNN+ViT approaches also appear with confidence estimation to support thresholding
and triage workflows [54]. Pediatric OPG work explores age-aware modeling and highlights cross-site shift as a key
limitation [82]. Methods that pair deep CNN features with classical classifiers (e.g., SVM) can deliver high agreement
when labels are limited, albeit with two-stage complexity. Broadly, reported results suggest competitive AUC/F1 on
internal cohorts, with backbone and resolution choices materially influencing performance [13]. see Table 7.

3.3 Periapical/bitewing radiographs: detection and Seg—Cls

Foundational pipelines established feasibility for tooth detection/numbering on periapical radiographs, providing
reference baselines and mAP by tooth index [49]. For lesions, instance/semantic segmentation—alone or as a front-end
to a final classifier (Seg—Cls) — consistently improves sensitivity to small, low-contrast targets relative to detection-only
approaches, at increased annotation cost. Modern convnets trained with gentle radiograph augmentation preserve faint
radiolucencies and yield competitive AUC/PR-AUC, while emphasizing the need for cross-site testing [50].

3.4 3D CBCT and CBCT-IOS fusion

CBCT contributes volumetric tooth-bone detail; IOS adds accurate surface geometry. Fusion improves anatomical
completeness when registration QA and intensity harmonization are enforced, with studies reporting higher planning
accuracy versus single-modality inputs [13]. Metal-artifact reduction (MAR) enhances visibility yet can alter intensity
statistics; both parameters and downstream effects should be documented and audited [26]. Cross-cutting methods:
imbalance, calibration, and explainability.

3.5 Cross-cutting observations

Across modalities, three patterns recur. First, conservative, modality-aware preprocessing (normalization for OPG;
color stabilization for RGB) supports stable training and plausible overlays [6],[11],[83]. Second, segmentation or
Seg—Cls tends to boost sensitivity for subtle, small targets in periapical tasks, with dataset resources emerging to
standardize comparison and reporting. Third, hybrid or attention-augmented encoders help capture long-range context
in OPG; several groups pair these with confidence measures to aid threshold selection and reader workflows [54],[82].
External, cross-site validation remains the main limitation cited across studies.

Table 7. Representative recent studies (abridged, organized by modality).

Modality Study Problem & Key contribution Limitations/notes Results (brief)
design
RGB Alalharith Gingivitis Standardized Needs imbalance AUC/Acc. improved
etal. 2020 detection from capture + ROI handling & calibration Vvs. naive
[12] intraoral improves preprocessing
photos grading/detection

(CNN/detector)
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RGB Park et Multi-label Feasible broad Heterogeneous capture; Macro-F1/PR-AUC
al,, 2022  intraoral photo screening on RGB threshold effects reported; PPV
[11] screening depends on
threshold.
RGB Ikhwani Comparative Side-by-side Dataset Competitive
et al.,, 2024 transfer backbone diversity/standardization =~ accuracy across TL
[48] learning for =~ benchmarking for backbones.
dental disease RGB tasks
classification
orG Zhu et al., OPG multi- Normalization +  Limited interpretability = Competitive AUCs
2023 [6] disease CNN multi-scale reporting (internal).
context
orG Almalki OPG model Baselines; effect Dataset variability Backbone/resolution
etal. benchmark of preprocessing materially affect
(2022) [13] AUC/F1.
OPG Li (2025);  Periodontitis  Clinically aligned Geometry sensitivity; Stage-wise Fl/i;
Shon staging on outcomes calibration needed sensitivity at set
(2022) orG specificity.
[10], [18]
Periapical Liuetal., Periapical Modern convs + Needs cross-site testing Competitive
2024 [50] lesion gentle AUC/PR-AUG
detection with augmentation preserves faint
ConvNeXt lesions.
3D/Fusion Hegazyet = CBCT MAR  Artifact reduction MAR side effects to Improved SNR and
al., 2023 improves inputs track downstream
[26] accuracy
3D/Fusion Liuetal, Deep Better anatomical Registration QA Higher planning
2023 [13] CBCT+IOS completeness mandatory accuracy vs. single
fusion modality

Abbreviations: AUC = area under the ROC curve; PR-AUC = area under the precision-recall curve; PPV = positive predictive value;

k = Cohen’s kappa; mAP = mean average precision; IoU = intersection over union; ECE = expected calibration error; SNR = signal-
to-noise ratio; TL = transfer learning.

4. Discussion and Model Analysis

In this section, we translate the literature synthesis into practical design guidance. We begin with backbone families
and their trade-offs (§4.1), then map clinical questions to task heads (§4.2), formalize operation under class imbalance
and probability calibration (§4.3-§4.4), and close with engineering considerations for deployment (§4.5).

4.1 Backbone families: practical trade-offs

e  ResNet-50 / DenseNet-121. Reliable defaults for radiographs and RGB under constrained data; calibrate
predictions to mitigate over-confidence on single-center cohorts [27,28].

o  EfficientNet-BO/B3, MobileNetV2/V3. Strong accuracy—efficiency for chairside/edge use; report ECE and apply
temperature scaling before fixing thresholds [32,20]

e  ConvNeXt/ Inception / Swin. Favor when long-range, multi-scale context is essential (OPG, multi-finding).
Check batch-1 latency and memory footprint at clinical resolution [34,30]

e  ViTl. Powerful global context with large-scale pretraining, hybrids or Swin often proves more data-efficient in
medical imaging [4].
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Takeaway: Start conv-first for limited data or edge constraints; escalate to Swin/hybrids for large-FOV OPG or
3D contexts when compute and data allow. A side-by-side of backbone families, data needs, and dental fit is provided
in Table 8.

4.2 Task heads vs. clinical questions

e  (lassification: best for screening; requires calibrated thresholds and a clear intended use (triage vs. confirmatory)
[20].
e  Detection: localizes focal findings (e.g., proximal caries). Use Focal Loss for class/anchor imbalance [17].

e  Segmentation: needed when geometry/staging matters (bone loss, lesion extent); report Dice/IoU and small-
structure analyses [18,19].

¢  Seg—Cls (segmentation-assisted classification): two-stage (masks — region features — class) that improves
sensitivity to small, low-contrast lesions and enables plausibility overlays; the workflow is illustrated in Figure 3.
Trade-offs are extra annotation and two-stage complexity [9,12].

e  DETR-style: cleaner priors with end-to-end set prediction, but typically more data-hungry and slower to

converge [39].

To turn these principles into quick, actionable choices, Table 8 provides a concise map that links each clinical
question to the most suitable head (Classifier / Detector / Segmenter / Seg—Cls / DETR-style), detailing outputs,
preferred use cases, key pros/cons, typical dental applications, and practical notes (e.g., calibration, class-imbalance
handling). Read Table 8 alongside Figure 3 and report under imbalance with PR-AUC in addition to ROC-AUC,
evaluated at a pre-specified specificity (e.g., 20.90) with sensitivity, PPV, and 95% Cls.

Table 8. Task heads: output, when to prefer, pros/cons, and typical dental use

(Families are representative, not exhaustive. Select according to data scale, resolution, and deployment constraints.)

Typical dental
Head Output Prefer when... Pros Cons yplcase enta Notes
u
Classifier Image/region Screening; global  Simple; No location RGB multl-la.bel; Calibrate
label status fast OPG screening thresholds
Boxes + Focal lesions; Localizes Misses Caries/periapical Focal loss helps
Detector . .1
scores triage findings shape cues on BW/PA [17]
Seementer Pixel/voxel = Geometry/staging  Precise Annotation Bone loss; Report
& mask needed extent cost periapical masks Dice/IoU[18,19]
Mask Good f
as Small/low- Boosts Two-stage Periapical ooctor
Seg—Cls features — contrast lesions  sensitivity complexit radiolucencies subtle cues
class y P y [9,12]
DETR- . End-to-end, fewer Clean Data- Panoramic multi- Longer training
Set of objects . . o
style priors design hungry finding [39]

Metrics note. For detection, add AP/mAP alongside PR-AUG; for classifiers, report PR-AUC and sensitivity/PPV at pre-specified
specificity.

4.3 Imbalance, thresholds, and calibration

Under skew, we recommend treating PR-AUC as mandatory alongside ROC-AUC and pre-specifying a fixed
specificity (e.g., > 0.90) with sensitivity/PPV and 95% ClIs, following TRIPOD+AI and standard imbalanced-data practice
[27,35]. Temperature scaling and reliability diagrams (ECE) turn scores into decision-useful probabilities [20]. For safety,
adopt selective prediction to abstain on low-confidence cases [41].

4.4  Interpretability and reader workflow

Grad-CAM overlays guide plausibility checks and error curation; IG/SHAP add cohort-level insigh . Prospective
reader studies are still sparse, but XAl panels are routinely requested by clinicians and can shorten adjudication in
discordant cases when presented with structured summaries (per-tooth/per-region outputs) [42-44].
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4.5  Engineering for deployment

Clinical viability requires disciplined engineering: pinned seeds/packages; saved configs; export to
ONNX/TensorRT with FP16/INT8 as appropriate; batch-1 latency and memory footprint on target hardware; structured
outputs (DICOM-SR/JSON); model cards and a fail-closed/abstention policy [27].

5. Challenges

This section consolidates the principal barriers to reliable dental AI—data/label quality, class imbalance, domain
shift, multimodal fusion, calibration/uncertainty, and clinician-usable explainability —and frames concrete safeguards
for each.

5.1 Data scarcity, label quality, and governance

Multi-site, diverse datasets remain rare; label noise (e.g., subtle proximal caries) is common. Best practice: patient-
level splits, site/scanner stratification, 22 expert readers with blinded re-reads, and a clear hierarchical taxonomy; report
k for agreement [27].

5.2 Class imbalance and clinically aligned operation

Imbalance is the norm in dental imaging: Combine data-level remedies (minority oversampling + stronger
augmentation) with loss-level choices (class-weighted CE, Focal Loss, and Unified Focal Loss for segmentation) [39].
Because clinical adoption hinges on specificity-constrained operation, thresholds must be pre-specified on validation
data (e.g., specificity > 0.90) and results reported at those thresholds (sensitivity and PPV with 95% Cls), not only overall
AUCs [17-19,35].

5.3  Domain shift and cross-site generalization

Cross-site performance often drops due to device/protocol differences. Include external cohorts and site-wise
reporting; benchmark domain adaptation and test-time adaptation baselines (DANN, Deep CORAL, TENT) [46,43,47].
For CBCT, disclose MAR and its effect on intensity statistics [26].

54  Multimodal fusion pitfalls
Fusion helps only with accurate registration and harmonized inputs. Enforce registration QA; analyze missing-
modality scenarios; ablate against single-modality baselines [42].

5.5 Calibration, uncertainty, and selective prediction
Modern networks are over-confident; apply temperature scaling; quantify ECE; explore ensembles or MC-dropout
to enable risk-coverage curves and abstention [44].

5.6 Explainability that clinicians can use

Grad-CAM, Integrated Gradients, and SHAP assist plausibility checks and error triage but are not proof of
correctness [44]. Reader-friendly panels should align saliency with known radiologic signs and surface shortcut cues
(acquisition markers, metal artifacts).

5.7 Reproducibility and reporting
Follow TRIPOD+AL: transparent splits; internal/external results; ROC-/PR-AUC; per-class precision/recall/F1; «;
Dice/IoU; calibration plots; 95% Cls; DeLong for correlated AUCs; decision thresholds; latency/memory [27].

5.8  Privacy, fairness, and auditing

Federated learning requires audit trails (data curation, update logs, fairness checks); if using differential privacy,
report (g, d) and the utility trade-off (e.g., APR-AUC at fixed specificity). Publish subgroup metrics (age/sex/device/site)
and discuss shortcut risks [44].

6. Future Directions

e Label-efficient learning at scale. Combine self-supervised pretraining with semi/weak supervision to reduce
annotation burden while improving recall and calibration across modalities.
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e Routine shift-robustness. Make domain adaptation (DANN/Deep CORAL) and test-time adaptation (TENT)
standard baselines; always include site-wise deltas on external cohorts.

e Calibration-first pipelines. Treat calibration and uncertainty as first-class outcomes — publish reliability
diagrams/ECE, Brier, and define abstention policies tuned on validation [34].

e Clinically usable fusion. Standardize CBCT«+IOS protocols (registration QA metrics, harmonization) and document
MAR side-effects; evaluate against robust single-modality baselines [30,31,42].

e Reader/workflow studies. Move beyond retrospective metrics to prospective, multi-center reader studies tracking
time-to-decision, discordant-case triage, and the utility of XAI overlays [44].

e Privacy-preserving collaboration with auditing. Develop federated frameworks with verifiable site-level audits
(quality, fairness, drift) and quantify DP trade-offs on sensitivity at fixed specificity.

e Decision rules under constraints. Provide practical “when-to-use-what” guidance (conv vs. transformer; classifier
vs. detector vs. segmentation vs. Seg—Cls) keyed to data scale, lesion size/contrast, FOV, and latency/memory
budgets (§§2.5, 4).

7. Recommendations

In summary, we recommend:

7.1 Data & labeling

Split at the patient level, stratify by site/scanner; include > 1 external cohort [27,44]; Publish a labeling protocol
(taxonomy + decision rules) and an adjudication flow (22 experts; ~10% blinded re-reads); report inter-rater ; When
dense masks are costly, combine self-supervised pretraining with semi/weak supervision rather than shrinking scope.

7.2 Objectives & metrics

Treat PR-AUC as mandatory alongside ROC-AUC for imbalanced problems; Pre-specify thresholds on validation
(e.g., specificity > 0.90), then report sensitivity and PPV with 95% CIs at those fixed thresholds on internal and external
tests; Use task-appropriate metrics: mAP/AP (detection), Dice/IoU (segmentation), and per-class precision/recall/F1
(classification).

7.3 Calibration & uncertainty
Apply temperature scaling (or isotonic) and publish reliability diagrams with ECE (optionally Brier); Define a
selective-prediction policy (when to abstain) and quantify the risk—coverage trade-off.

7.4 Shift robustness
Provide site-wise performance and cross-site deltas; where relevant, add domain adaptation or test-time
adaptation baselines. For CBCT, document MAR usage and intensity harmonization and analyze their impact.

7.5 Backbones & heads (fit to constraints)
Choose encoders/heads by data scale, lesion size/contrast, resolution, and latency/memory budget (see §4 tables);
Prefer Seg—Cls when small, low-contrast lesions are clinically critical.

7.6 Explainability (XAI)
Provide clinician-readable panels (Grad-CAM / Integrated Gradients / SHAP), sanity checks, and failure galleries
linking saliency to recognized radiologic signs.

7.7  Engineering & deployment

Report batch-1 latency, memory footprint, and throughput at clinical resolution on target hardware; Emit
structured outputs (DICOM-SR/JSON) with per-tooth/per-region fields to ease PACS/RIS integration; Release model
cards (intended use, cohorts, thresholds, limitations) and document fail-closed/abstention behavior; Pin seeds/packages,
track configs; export for inference (ONNX/TensorRT; consider FP16/INT8).
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7.8  Privacy & fairness
In federated settings, define who audits site contributions, fairness, and drift; publish audit summaries; If using
differential privacy, report £/d and the performance impact at fixed specificity.

7.9  Reproducibility & transparency (add)
Provide code and exact configs, dataset split manifests, and versioned model artifacts sufficient for third-party
replication; Align reporting with TRIPOD+ALI items (checklist in supplement).

7.10 Post-deployment monitoring (add)
Establish a plan for monitoring calibration and performance drift, periodic re-calibration, and subgroup audits; log
abstentions and clinician overrides.

7.11 Practical deployment rule

If, after calibration, specificity-constrained targets on an external cohort are not achieved, the model must be
deployed only as a second reader with selective abstention—never as an autonomous gatekeeper. Promotion to
autonomous use should occur only after the model meets and sustains those externally validated, specificity-
constrained targets under post-deployment monitoring.

8. Conclusion

This review synthesizes DL methods for assessing dental anomalies and diseases across intraoral RGB, BW/PA
radiographs, panoramic OPG, and 3D CBCT/IOS, emphasizing modality-aware preprocessing, imbalance-aware
objectives, and calibration as prerequisites for decision-useful Al. Compared with prior surveys, we center clinically
constrained operation—pre-specified, high-specificity thresholds with calibrated probabilities and selective
abstention —alongside engineering artifacts (latency, memory) and structured outputs for integration. Persistent gaps
include small single-center datasets, limited cross-site robustness, under-reported calibration/uncertainty, and scarce
prospective reader/workflow studies. Moving forward, label-efficient learning, routine shift-robustness baselines, and
federated, auditable collaboration are essential. Critically, site-stratified external validation should be a gating criterion
before deployment. With these guardrails, dental Al can progress from retrospective promise to dependable, safety-
preserving and workload-reducing support that augments—rather than replaces—expert judgment.
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