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Abstract 

Oral anomalies and dental diseases affect billions of people worldwide, yet diagnosis 

often relies on manual interpretation of radiographs and clinical images, which is time-

consuming and prone to variability. Advances in deep learning (DL) have opened new 

opportunities for accurate, efficient, and scalable dental diagnostics. This review examines 

state-of-the-art DL frameworks applied to dental imaging modalities, including intraoral 

RGB photographs, bitewing and periapical radiographs, panoramic radiography, and 

cone-beam computed tomography (CBCT). The analysis covers preprocessing pipelines, 

backbone architectures (convolutional neural networks and vision transformers), task 

designs (classification, detection, segmentation, hybrid models), and strategies for 

addressing data imbalance, calibration, and uncertainty. Findings reveal that modality-

specific preprocessing enhances reliability, hybrid CNN-Transformer models improve 

performance for wide-field or complex tasks, and segmentation-assisted classification 

increases sensitivity to subtle lesions. Moreover, calibrated probability outputs, robust 

evaluation metrics (ROC-AUC, PR-AUC), and external validation are essential for clinical 

readiness. The review identifies critical gaps—limited cross-site generalization, under-

reported calibration, and scarce real-world validation—and outlines future directions 

such as label-efficient learning, federated training, and calibration-first pipelines. With 

these safeguards, DL-based systems can evolve from experimental tools to trustworthy 

clinical aids that strengthen diagnostic accuracy and decision support in dentistry.  

Keywords: Dental imaging; deep learning; convolutional neural networks (CNNs); vision 

transformers (ViT); Class imbalance; probability calibration. 

1. Introduction 

Oral and dental health is a vital component of overall well-being, yet dental anomalies and oral diseases remain 

among the most prevalent chronic conditions worldwide. Approximately 3.5 billion people are affected, with the 

burden driven primarily by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion) [1,2]. When 

untreated, these conditions lead to pain, infection, tooth loss, and systemic complications that impair nutrition, speech, 

and quality of life; the burden is amplified in low- and middle-income countries where preventive services and 

advanced diagnostics are limited [1]. Traditional diagnosis relies on clinical assessment and manual interpretation of 

radiographs, which is time-consuming, subjective, and prone to inter-observer variability; overlapping anatomy, image 

noise, and early lesions further complicate detection [3]. 
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Against this backdrop, artificial intelligence (AI)—particularly deep learning (DL)—has accelerated progress in 

medical image analysis, including transformer-based vision models such as ViT and Swin that capture long-range 

context [4,5]. In dentistry, preliminary work demonstrates AI on panoramic radiographs for multi-condition screening 

[6],while broader surveys of medical imaging emphasize scalable, data-efficient pipelines that transfer to clinical tasks 

[7,8].The evidence base spans panoramic staging/measurement on OPG [9,10], multi-label screening from intraoral RGB 

photographs [11,12], and three-dimensional analyses using CBCT and CBCT–IOS fusion to enrich anatomical context 

[13,14]. Persistent methodological gaps remain [7] highlights the need for transparent intended-use claims, external 

testing, and pre-specified operating points, alongside evaluation under class imbalance where PR-AUC complements 

ROC-AUC to reflect clinically meaningful decision thresholds [7].  

Gap and novelty: Previous reviews have not consistently addressed probability calibration, explainability, and 

deployment readiness across all major dental imaging modalities. This review targets that gap by integrating: (i) 

modality-aware preprocessing and class-imbalance remedies; (ii) calibrated, threshold-ready probabilities (ECE, 

reliability diagrams) reported at clinically constrained operating points; and (iii) deployment artifacts (latency, memory 

footprint, structured outputs) together with external, site-stratified validation aligned with contemporary reporting 

guidance. 

Objectives: This review aims to: 

1. compare CNN and transformer frameworks across dental modalities and tasks. 

2. consolidate imbalance-aware objectives and calibration metrics (PR-AUC, Cohen’s κ, ECE, reliability diagrams) 

with clinically meaningful operating points. 

3. Summarize deployment and reporting practices, including external validation, efficiency reporting, and 

integration into clinical systems. 

Organization of the paper  :Section 2 provides background and the theoretical framework; Section 3 reviews the 

literature by modality and task; Section 4 analyzes model choices and trade-offs; Section 5 outlines challenges; Section 

6 describes future directions; Section 7 presents actionable recommendations; and Section 8 concludes. 

2. Background and Theoretical Framework 

2.1 Machine Learning (ML): a concise orientation 

Machine learning (ML)  studies algorithms that improve at a task through experience (data) rather than hand-

written rules. Instead of prescribing decision logic, we provide examples and let the model infer patterns that map 

inputs to outputs. 

Core idea: ML assumes useful regularities exist in the data and seeks to approximate the unknown function that 

generated them. The central challenge is generalization—performing well on new cases, not only on the training 

examples. 

Data, features, and representations: Classic ML relied on human-designed features; modern approaches 

increasingly learn representations directly from raw inputs (via deep models or self-supervised objectives), reducing 

manual engineering [7,8]. 

Model families (high level): Linear models (logistic/linear regression): simple, interpretable baselines; effective with 

near-linear relations or limited data; 

Kernel methods (SVM, Gaussian processes): capture non-linear structure via similarity functions; Tree ensembles 

(Random Forests, Gradient Boosting): robust to mixed types/outliers; strong tabular baselines; Neural networks (feed-

forward, CNNs, Transformers): flexible function approximators that scale with data and compute. 

Why ML works well now: The confluence of three reinforcing trends— (1) larger datasets, (2) more compute, and 

(3) better algorithms (optimization, architectures, regularization)—has enabled rich, transferable representations across 

vision, language, and structured data. 

2.2 Deep Learning (DL): encoders, tasks, and objectives 

Deep learning (DL) is a branch of ML that uses multi-layer neural networks to learn complex functions directly 

from raw data, with hierarchical features learned end-to-end [7]. Training adjusts weights to minimize a loss via 

backpropagation and stochastic gradient methods (e.g., SGD, AdamW). 
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2.2.1 Key backbones 

CNNs (VGG, ResNet, DenseNet, Inception/Xception, EfficientNet, MobileNet, ConvNeXt/RegNet): exploit local 

patterns; strong for images; compute-efficient and data-friendly; Representative references appear in §2.5.1. Vision 

Transformers (ViT, Swin): self-attention captures long-range context; well-suited to wide-field or high-resolution 

inputs; typically benefit from stronger pretraining [4,5]. 

2.2.2 Task heads 

Classification (image/ROI label) for fast screening; Detection (bounding boxes) for focal findings; Segmentation 

(pixel/voxel masks) when geometry/staging matters; Seg→Cls (segmentation-assisted classification) to boost sensitivity 

for subtle, small targets. 

2.2.3 Training essentials 

Optimization/regularization: SGD/AdamW, residual connections, normalization, dropout, weight decay, and data 

augmentation (e.g., flips/rotations, MixUp, CutMix) [15,16]; Losses under imbalance: class-weighted cross-entropy, 

Focal Loss for classification/detection[17], Dice/IoU-aware losses (e.g., Focal-Tversky and Generalized Dice for 

segmentation[18,19]; Calibration: temperature scaling with reliability diagrams/ECE for decision-useful 

probabilities[20]. Evaluation & robustness: Use ROC-AUC and PR-AUC under skew; report sensitivity/specificity at 

clinically fixed thresholds with confidence intervals. Prevent leakage with subject/site-level splits. Self-/semi-supervised 

pretraining and careful augmentation improve cross-site transfer [8, 40]. 

2.3 Clinical Overview of Dental Anomalies and Oral Diseases 

Global burden: Oral diseases are among the most common non-communicable conditions worldwide (~3.5 billion 

affected), driven mainly by untreated dental caries (~2.5 billion) and severe periodontitis (~1 billion). Consequences 

include pain, infection, tooth loss, and impaired nutrition, speech, and quality of life—especially in underserved settings 

[1,2]. 

Routine diagnosis: Clinical examination plus radiographic interpretation remains standard, yet early or subtle 

lesions (e.g., proximal caries, incipient periapical radiolucencies) are frequently missed, and inter-observer variability 

reduces reliability [3]. Imaging adds modality-specific cues: bitewings (interproximal enamel–dentin changes), 

periapicals (apical radiolucency), OPG (jaw-wide screening), CBCT (3D tooth–bone anatomy), and intraoral RGB 

(color/texture) [11] Representative appearances are shown in Figure 1, and clinical targets are mapped to modality and 

deep-learning (DL) task types in Table 1. 

Brief disease primers (diagnostic signatures): Dental caries: enamel–dentin radiolucency; bitewings preferred for 

proximal lesions; conservative contrast handling preserves faint signals [21,22]; Gingivitis & calculus: 

erythema/edema and mineralized plaque; in RGB, white balance and ROI-centric framing stabilize color cues [11]; 

Periodontitis: crestal bone-level reduction and angular defects; measurement/segmentation on BW/OPG with stage-

aware reporting [9,10]; Periapical lesions: apical radiolucency ± cortical disruption; PA first, CBCT for 3D extent; 

Seg→Cls can improve sensitivity for small lesions [13,  [24 ; Tooth wear/erosion: glossy facets, enamel loss, cupping; 

standardized RGB capture mitigates illumination bias [11]; Oral mucosal ulcers: shallow ulcer base with erythematous 

halo and fibrin slough; careful annotation required due to visual variability [11]. 

 

Figure 1. Representative findings across modalities (clinical montage): (A) intraoral RGB; (B) PA/BW radiographs; (C) 

OPG; (D) CBCT/IOS. 
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Table 1. Clinical targets mapped to primary imaging modality, radiologic signature, DL head(s), and Representative studies 

Condition Primary modality Typical signature DL task focus 
Representative 

studies 

Proximal /occlusal 

caries 
Bitewing /Periapical 

Enamel–dentin 

radiolucency 

Classification/ 

Detection 

[22], [3] 

Periodontitis (bone 

loss) 
Bitewing / OPG 

Crestal bone-level 

reduction; angular 

defects 

Measurement / 

Segmentation 

[9], [10] 

Periapical lesion Periapical / CBCT 
Apical radiolucency; 

cortical disruption 

Detection + 

Segmentation 

[13],[26] 

Tooth wear / erosion Intraoral RGB 

Glossy wear facets; 

enamel loss; 

cupping 

Grading /  

Classification 

[11] 

Developmental 

anomalies 
OPG / CBCT 

Missing/extra teeth; 

impactions 

Multi-label  

classification 

[6], [3] 

Mucosal  

inflammation / 

ulcers 

Intraoral RGB 
Redness; ulcer base; 

fibrin slough 

Lesion localization / 

Classification 

[11] 

1 Note: OPG = orthopantomogram (panoramic radiograph); CBCT = cone-beam computed tomography; RGB = intraoral color 

imaging; DL = deep learning. “Typical signature” items are illustrative and may vary by exposure/positioning. 

2.4 Imaging Modalities & AI Relevance 

Modality-aware design : Tailor preprocessing and model choices to each modality’s physics/geometry to 

preserve faint cues and avoid anatomical distortion [3]. 

 The main practical points are: 

• Intraoral RGB: white-balance/color-constancy → mild photometric jitter; ROI cropping; bounded augmentation 

[25]. see the preprocessing block in Figure 2. 

• Periapical/OPG: conservative contrast (mild CLAHE/gamma), small affine transforms; avoid heavy blur that 

suppresses subtle radiolucencies [3]; key cautions are listed in Table 2; 

• CBCT/IOS: isotropic resampling and intensity harmonization; MAR when appropriate (document potential 

intensity shifts); strict registration QA for CBCT ↔IOS fusion[26]; the Seg→Cls variant is sketched in Figure 3. 

 

Figure 2. Reliability-aware workflow: preprocessing → encoder (CNN/Transformer) → uncertainty → calibration (ECE) 

→ fixed operating points 
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Figure 3. Segmentation-assisted pipeline (Seg→Cls): enhancement/cropping/augmentation → feature backbone → 

proposals/masks → calibrated decision with Grad-CAM overlays.  

Table 2. Modalities, typical DL tasks, advantages/limitations, and practical notes. 

Modality Typical tasks Advantages Limitations Practical notes 

Intraoral RGB 

Caries, calculus, 

mucosal lesions, 

discoloration 

Rich color 

/texture; low 

cost 

Illumination/ 

specular glare; 

pose variability 

Apply white-balance 

and color-constancy; 

crop to ROI; use 

bounded color jitter.  

Periapical 

radiograph 

Apical lesions; 

endodontic status; 

per-tooth 

assessment 

High 

root/detail 

 resolution 

Sensitivity to 

projection  

geometry 

Prefer conservative 

contrast operations (e.g., 

mild local contrast); 

avoid heavy blur; small 

affine only. 

Bitewing 

radiograph 

Proximal caries; 

crestal bone levels 

Good 

interproximal 

visibility 

Overlap; 

horizontal 

angulation 

errors 

Minor rotations/affine 

only; document 

alignment protocol.  

Occlusal 

radiograph 

Impactions; 

supernumeraries 

Wide occlusal 

field 

Lower in-plane 

resolution 

Use multi-scale 

encoders; moderate 

input size. 

Panoramic 

(OPG/DPR) 

Multi-finding 

screening; anomaly 

mining; staging 

Global jaw 

context 

Magnification; 

overlap/distortio

n 

Multi-scale/long-range  

encoders; careful 

grayscale normalization.  

Cephalometric 

(lateral/PA) 

Skeletal relations; 

landmarking 

Standardized 

projections 

Landmark 

variability 

Keypoint/segmentation 

pipelines; inter-rater 

consistency checks.  

CBCT (3D) 

Implants, 

pathology, root 

morphology 

True 

volumetric 

anatomy 

Dose; metal 

artifacts; voxel 

size variance 

Isotropic resampling; 

MAR when needed; 

intensity harmonization 

across scans.  

IOS (3D 

surface) 

Occlusion; aligners; 

surface fusion 

Accurate 

dental surfaces 

No internal 

anatomy 

Smooth meshes; 

rigid/non-rigid 

registration QA; fuse 

with CBCT/OPG if 

available.  

NILT / QLF / 

OCT / HSI 

Early 

caries/plaque/cracks

; tissue typing 

Non-ionizing; 

quantitative/sp

ectral 

Limited FoV; 

device 

availability; 

high 

dimensionality 

Device calibration; 

dimensionality 

reduction; patch-based 

local 3D nets 
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2Notes: ROI = region of interest; BW = bitewing; PA = periapical; OPG/DPR = panoramic radiography; CBCT = cone-

beam computed tomography; IOS = intraoral surface scan; NILT = near-infrared light transillumination; QLF = 

quantitative light-induced fluorescence; OCT = optical coherence tomography; HSI = hyperspectral imaging; MAR = 

metal-artifact reduction; FoV = field of view. “Conservative contrast operations” = mild local contrast adjustments (e.g., 

CLAHE with gentle gamma) that preserve faint radiolucencies; “intensity harmonization” = matching intensity ranges 

across scanners/exams. 

2.5 CNN/Transformer Families & Heads 

Scope: This section summarizes widely used image encoders (classic CNNs, modern convnets, vision transformers) 

and links them to task heads (classification, detection, segmentation, Seg→Cls) that recur across dental imaging. The 

goal is a practical “when to use what” map tied to data scale, lesion size/contrast, field-of-view, and deployment 

constraints. Figures 2–3 visualize the surrounding workflow choices; Tables 3–4 give side-by-side comparisons. 

2.5.1 Convolutional encoders (representative families) 

Convolutional encoders (CNNs) are a practical default for dental imaging because they capture local textures and 

edges, run efficiently on common hardware, and transfer well from ImageNet. With limited or imbalanced datasets—

typical in dentistry—CNN backbones often deliver strong, stable baselines for periapical, bitewing, and panoramic 

tasks. Use them when latency/memory matter or when global long-range context is not the primary bottleneck. 

• ResNet-50. Residual skips stabilize deep training and transfer well; a dependable default for periapical/OPG classifiers and 

detectors. On small single-center sets, tighten regularization and calibrate probabilities to curb overfitting [27,20]; 

• VGG-16. Deep stacks of 3×3 convs with a large FC head; stable transfer features but heavy (~138 M params). 

Mostly a baseline now when memory permits [28]; 

• DenseNet-121. Dense connections encourage feature reuse and strong gradients with good parameter efficiency; 

watch activation memory during training [29] 

• InceptionV3 / Xception. Multi-scale (factorized) convs and auxiliary heads capture wide-field context useful for 

OPG; prefer ≥299² inputs; Xception’s depthwise separables are parameter-efficient [30,31]; 

• MobileNetV2/V3. Inverted residuals and NAS/SE refinements suit edge-class latency/power budgets 

(chairside/handheld). Report ECE and apply temperature scaling before fixing clinical thresholds; 

• EfficientNet / EfficientNetV2. Compound scaling offers strong accuracy-efficiency; B0–B3 reliable on 

RGB/periapicals; larger variants need careful input sizing and memory planning [32,33] 

• ConvNeXt / RegNet. “Modern conv” designs that match transformer-level accuracy with predictable compute; 

check batch-1 latency for high-res OPG multi-finding and pick RegNetX/Y to meet millisecond budgets [34–36]. 

2.5.2 Vision transformers (global-context encoders) 

Unlike CNNs, vision transformers use self-attention to capture long-range context across patches 

• ViT: Global self-attention over patch tokens; excellent long-range context but benefits from large pretraining or 

strong regularization on smaller dental datasets [4]; 

• Swin Transformer: Shifted-window attention yields hierarchical, high-resolution features well suited to 

detection/segmentation on OPG and 3D; typically more data-efficient than vanilla ViT in medical imaging [5]. 

Rule of thumb: Prefer convnets (ResNet/DenseNet/EfficientNet) for limited data, high-SNR radiographs, and tight 

latency; consider Swin/hybrids when long-range context is essential (panoramic, large-FoV, multi-finding) and compute 

allows. 

2.5.3 Task heads and their clinical fit 

• Classification (image/ROI label). Best for screening/global status; simple and fast but no localization. Pair with 

calibrated thresholds for triage [20,41]; 

• Object detection (boxes + scores). Targets focal findings (e.g., proximal caries, periapical cues). Focal Loss helps 

with class/anchor imbalance [17]. 

• Segmentation (pixel/voxel masks). Needed when geometry matters (bone-loss measurement, lesion extent). 

Combine CE with Dice/IoU-aware losses; Focal-Tversky can boost small-structure sensitivity [18,19]; 
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• Seg→Cls (segmentation-assisted classification). Two-stage (masks → region features → final class) improves 

sensitivity to small/low-contrast lesions and supports Grad-CAM overlays; useful for subtle periapical pathology 

[9,12]; 

• DETR-style detectors. End-to-end set prediction with fewer hand-tuned priors; clean design but comparatively 

data-hungry and slower to converge [37]. 

2.5.4  Data augmentation — task/modality-aware recipes 

Good augmentation in dental imaging should stay anatomically plausible and respect imaging physics. The goal 

is to boost generalization without washing out subtle diagnostic cues (e.g., faint interproximal radiolucencies or mild 

mucosal erythema). Below are conservative, low-risk defaults by modality and task. Parameters are deliberately modest; 

push them further only if you can justify with ablations and visual spot-checks[38]. 

General principles (apply everywhere) 

1. Keep geometry believable. Use small rotations/translations/scale to avoid unrealistic tooth/bone deformation. 

2. Protect diagnostic signal. Avoid heavy blur/sharpen and extreme photometric shifts that could hide early caries or 

apical changes. 

3. Match real-world variability. Use site/device-aware photometrics (e.g., color constancy for RGB; gentle local 

contrast for X-ray) to mimic clinical capture differences]. 

4. Prevent leakage & document settings. Augment after patient-level splitting with site/scanner stratification; report 

exact operators/ranges; calibrate probabilities (reliability diagrams/ECE) before fixing thresholds. 

(A) Radiographs (BW/PA/OPG) 

• Geometry: rotations ≈±3–5°, tiny translations (≤3%), scale ≈0.97–1.03; horizontal flip only when left–right 

symmetry is clinically acceptable. 

• Photometrics: mild local contrast (e.g., CLAHE clip 1.0–2.0; 8×8 grid) or gentle gamma ≈0.9–1.1 to counter 

exposure variability without over-enhancing edges. 

• Notes: stay conservative to preserve faint proximal radiolucencies and apical signs; for OPG, pair with careful 

grayscale normalization. 

(B) Intraoral RGB photographs 

• Color pre-normalization: white balance or color-constancy (e.g., Gray-World/Shades-of-Gray) to reduce 

device/lighting drift. 

• Framing: ROI-centric random crops (scale ≈0.85–1.00; aspect ≈0.9–1.1) to maintain tooth/gingival context. 

• Conservative jitter: brightness ±0.10–0.18, contrast ±0.08–0.15, saturation ±0.10–0.20, hue ±5–10°, gamma 0.9–1.1. 

• Avoid: strong blur/sharpen or aggressive color shifts that might mask enamel discoloration or mucosal erythema 

[3,24,25]. 

(C) CBCT volumes and CBCT↔IOS fusion 

• Resampling & geometry: isotropic resampling to a clinically appropriate voxel size before augmentation; small 

3D rotations ≈±5–10° and scale ≈±5% only. 

• Intensity handling: site/scanner harmonization; if metal-artifact reduction (MAR) is used, document parameters 

and audit downstream impact because MAR changes intensity statistics. 

• Fusion: enforce QA for CBCT↔IOS registration and report alignment metrics/failure modes [23,24]. 

(D) Detection and segmentation heads 

• Sampling: class- and ROI-balanced crops/patches to counter foreground sparsity (anchors/proposals). 

• Deformations: small affine/elastic only; avoid shape warps that would invalidate measurement tasks (e.g., bone-

loss staging). 

• Loss coupling: use Focal Loss for detection, and Generalized Dice or Focal-Tversky for imbalanced/small masks 

in segmentation [17–19]. 
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(E) Mix-based regularizers (use sparingly) 

• MixUp/CutMix: helpful on small, heterogeneous cohorts to stabilize decision boundaries; keep strengths modest 

(typical α≈0.2–0.4; CutMix probability ≤0.2) so you don’t wash out faint signals [15,16,21] 

• CoarseDropout: a single small hole (≤24–32 px in 2D) at low probability to encourage robustness without erasing 

key anatomy. 

(F) Reporting, calibration, and safeguards 

• Qualitative verification: include a montage of augmented samples per modality (in the supplement) to visually 

confirm plausibility; 

• Ablations: report no-aug vs proposed-aug; under class imbalance, include PR-AUC alongside ROC-AUC, and 

report sensitivity/PPV at pre-specified specificity (e.g., ≥0.90) with 95% CIs [7,27]; 

• Calibration: augmentation may cut variance but does not guarantee calibrated probabilities; apply temperature 

scaling and report reliability diagrams/ECE before fixing clinical thresholds[ 20]. 

Take-home: Prefer small, physics-respecting transforms tuned to each modality and task. For radiographs, 

emphasize conservative contrast and minimal geometry; for RGB, stabilize color; for CBCT, prioritize 

resampling/harmonization and registration QA. Couple these recipes with imbalance-aware losses, calibration, and 

transparent reporting to achieve clinically meaningful, reproducible gains[37]. 

2.5.5 Choosing encoders and heads — practical guidance 

Selecting a backbone and prediction head should reflect the task (classification, detection, segmentation), dataset 

scale/imbalance, and deployment constraints. The checklist below summarizes pragmatic defaults and reporting 

practices. Pick the backbone/head to match task, data scale/imbalance, and deployment limits. 

• Small, imbalanced datasets: ResNet-50, DenseNet-121, or EfficientNet-B0/B3; class-aware training (class weights or 

Focal) with mild label smoothing; avoid double-weighting; calibrate with temperature scaling; report PR-AUC and 

sensitivity/PPV at fixed specificity (≥0.90) with 95% CIs; include a small external test when available [27,32, 20]. 

• Wide-field OPG: InceptionV3, ConvNeXt, or Swin with detection/segmentation heads; many tasks are multi-label—

use BCE/Focal-BCE and report mAP/AP and macro-F1; measure throughput and batch-1 latency at clinical 

resolution [31,34,5]. 

• Subtle, small, low-contrast lesions: segmentation or Seg→Cls; consider Focal-Tversky/unified-focal; gentle CLAHE 

can help—quantify on validation [18,25]. 

• Edge (chairside): efficient backbones (EfficientNet-B0/B3 or compact variants); plan pruning and INT8 quantization; 

profile batch-1 latency/memory/power; assess calibration (ECE) before locking thresholds [32, 20]. 

• 3D CBCT & fusion: Swin or hybrid pyramids feeding 3D/2.5D segmenters; document MAR, intensity 

harmonization, and resampling; validate registration (TRE, HD95/Chamfer) and report timing/memory [23, 26]. 

Reporting & calibration (all): Compute ECE with reliability diagrams; fix thresholds on validation, then report 

sensitivity/PPV (or mAP for detection, Dice/IoU for segmentation) with 95% CIs on internal/external tests. Include 

runtime, memory, and—when relevant—energy at clinical resolution [20,41]. 

 Table 3. Encoder families— core idea, strengths/limits, typical dental fit, key refs. 

Family  Core idea Strengths Limitations Typical dental fit Key 

refs 

ResNet-50 Residual skips Stable transfer, 

robust 

Can overfit 

small cohorts 

Periapical/OPG 

classifiers & detectors 

[27] 

DenseNet-121  Dense reuse Param-efficient Activation 

memory 

Radiographs with 

limited data 

[30] 

InceptionV3/Xception Factorized 

convs 

Multi-scale 

context 

Prefers ≥299² 

inputs 

Wide-field OPG [31,32] 

EfficientNet-B0/B3 Compound 

scaling 

Strong acc-

efficiency 

Larger variants 

need care 

RGB/ periapical, 

screening 

[33,34] 
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Mobile-friendly 

CNNs 

Inverted 

residuals 

Edge 

latency/power 

Capacity limits Chairside/handheld [32] 

ConvNeXt/RegNet Modern conv 

design 

Transformer-

level acc. 

Check batch-1 

latency 

OPG multi-finding [34 -36] 

ViT/Swin Self-attention Global context Data/pretrain 

hungry 

OPG/3D; detection/seg [4,5] 

Table 4. Task heads and when to use them. 

Head Output Prefer when Pros Cons Dental use Refs 

Classifier Image/ROI label Screening /  Simple, fast No 

localization 

RGB multi-label; 

OPG screening.  

[7,28] 

Detector Boxes + scores Focal 

lesions / 

triage 

Localizes Misses 

shape 

Caries/periapical on 

BW/PA.  

[37] 

Segmenter Pixel/voxel mask Geometry / 

staging 

Precise 

extent 

Annotation 

cost 

Bone loss; lesion 

masks.  

[19,18] 

Seg→Cls Mask→features→class Small / low-

contrast 

Boosts 

sensitivity 

Two-stage Periapical 

radiolucencies.  

[9,12] 

DETR-

style 

Set of objects Fewer 

priors 

Clean 

design 

Data-

hungry 

OPG multi-finding [39] 

2.6 Class Imbalance and Probability Calibration 

Why imbalance matters: Dental datasets are typically skewed (many healthy/mild cases, fewer severe or rare 

conditions). Under skew, models can look “good” on accuracy while failing to detect minority classes. Two levers are 

used together: (A) data-level rebalancing and (B) loss-/threshold-level reweighting. 

(A) Data-level rebalancing: Stratified k-fold and patient-level splits keep prevalence consistent and prevent 

leakage across views of the same subject; Class-aware sampling / minority oversampling paired with stronger 

augmentation for rare classes (e.g., MixUp, CutMix, careful photometric/affine; Albumentations) helps reduce 

variance without memorizing artifacts; For detection/segmentation, hard-example mining and patch/ROI balancing 

reduce anchor/foreground sparsity. 

(B) Losses, smoothing, and thresholds: Class-weighted CE or Focal for skewed classification; 

Focal-Tversky/Generalized Dice for tiny/sparse masks; mild label smoothing can temper over-confidence on small, 

heterogeneous sets [17–19]. Fix operating thresholds on the validation set, then report sensitivity and PPV at a pre-

specified specificity (e.g., ≥ 0.90) with 95% confidence intervals [41]. 

Calibration for decision-useful probabilities: Neural networks are often mis-calibrated (over-confident). 

Temperature scaling is a simple, effective post-hoc method to reduce ECE, and reliability diagrams plus the Brier score 

communicate probability trustworthiness. For safety-critical use, adopt selective prediction (abstain under low 

confidence) to trade coverage for risk [20,40]. 

Table 5. Class-imbalance remedies at a glance. 

Lever What it does Prefer when… Caveats Refs 

Class-aware 

sampling / minority 

oversampling 

Increases rare-class 

exposure per epoch 

Severe skew; small 

datasets 

Risk of overfitting 

without strong 

augmentation 

[21,38] 

MixUp / CutMix 

(with standard aug) 

Regularizes decision 

boundary; combats 

label noise 

Limited labels; 

heterogeneous capture 

Tune mix ratios; 

preserve faint 

radiolucencies on X-ray 

[15,16,21] 

Class-weighted CE 
Penalizes minority 

errors more 

Any skew; simple 

baseline 

Can still be over-

confident 
[17] 
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Focal Loss (cls.) 

Down-weights easy 

negatives; focuses on 

hard positives 

Detection/cls. with many 

negatives 

Tune γ and α; watch 

convergence 
[17] 

Unified-Focal / Focal-

Tversky (seg.) 

Emphasizes 

small/sparse masks 

Tiny lesions; bone-loss 

edges 

Balance with Dice/CE 

for stability 
[18,19] 

Label smoothing 

Reduces over-

confidence, noise 

sensitivity 

Small/heterogeneous 

labels 

Too much can blur 

minority signals 
[30] 

Thresholds at fixed 

specificity 

Clinically aligned 

operation 

Screening/triage 

workflows 

Must be set on 

validation, then locked 
[41] 

Temperature scaling 

+ ECE 

Calibrates 

probabilities 
Before deployment 

Re-tune if distribution 

shifts 
[20] 

2.7 Explainability and Multimodal Fusion 

Explainability (XAI): what it is—and is not. Post-hoc methods help clinicians judge plausibility (did the model look 

at the right place?) and curate error galleries; they do not guarantee correctness. Use multiple views and sanity checks, 

and interpret XAI alongside metrics and external validation [41–43] 

Figure 4 illustrates the Grad-CAM pipeline used in this review—covering target-layer selection, heat-map 

computation, and upsampling/overlay—and serves as a reference for the plausibility panels reported later . 

 

Figure 4. Schematic of the Grad-CAM workflow used in this review: (1) select the target convolutional layer; (2) compute 

class-discriminative gradients and weight the feature maps; (3) up-sample and overlay the heat map on the input image 

for clinician-readable plausibility checks [43].  

1. Common tools: 

• Grad-CAM: fast class-discriminative heatmaps—good for plausibility overlays and quick QA; layer-dependent 

and resolution-limited [41]; 

• Integrated Gradients: axiomatic attributions; useful for aggregated trends; sensitive to baseline choice  [42 ] ; 

• SHAP: consistent feature contributions; informative cohort-level analysis; computationally heavier[43] 

Table 6. Popular XAI methods. 

Method Strengths Limitations Dental use cases Refs 

Grad-CAM Fast, intuitive overlays 
Layer/resolution 

dependent 

Lesion plausibility; failure 

analysis panels 
[41] 

Integrated 

Gradients 
Axiomatic, path integrated 

Baseline choice 

sensitivity 
Aggregate attribution trends [42 ]  

SHAP 
Consistent local→global 

contributions 
Compute cost 

Cohort-level factor analysis, 

reader studies 
[43] 
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2. Multimodal fusion (OPG/PA/CBCT‑IOS): Early fusion (with reliable registration) exploits complementary cues; 

late/attention fusion is safer when modalities are heterogeneous or missing. For CBCT‑IOS, enforce registration 

QA, isotropic resampling, and intensity harmonization; if MAR is applied, document potential intensity shifts 

and audit downstream bias [23,26]. Include ablations vs. single‑modality baselines and report site/scanner‑wise 

results [27]. 

2.8  Evaluation and Reporting 

2.8.1 Data splits and leakage prevention 

Use patient-level splits with site/scanner stratification; never allow multiple images from the same patient to 

cross train/validation/test. Include at least one external test cohort to quantify distribution shift [27]. 

2.8.2 Metrics under class imbalance  

• Classifiers: ROC-AUC + PR-AUC; per-class precision/recall/F1; report sensitivity/PPV at a fixed specificity (e.g., ≥ 

0.90) with 95% CIs[40]; 

• Detectors: AP/mAP at relevant IoU thresholds; baselines include Faster R-CNN and DETR; see dental exemplars 

in §3 and Table 7 [37,39]; 

• Segmenters: Dice and IoU, with small-structure analyses (e.g., per-tooth bone-loss edges) [18,19]; 

• Calibration: reliability diagrams, ECE, optionally Brier; apply temperature scaling before fixing thresholds [20]. 

2.8.3 Statistical testing and uncertainty 

Use patient-level bootstrapping to derive confidence intervals (CIs) and paired tests for matched designs. Quantify 

predictive uncertainty—e.g., Monte-Carlo Dropout—to enable selective prediction and risk–coverage analyses, so low-

confidence cases can be flagged or deferred [44]. 

Generalization and shift robustness: 

Report site-wise performance and cross-site deltas. When target labels are unavailable, benchmark unsupervised 

domain adaptation (DANN; Deep CORAL) [45] and test-time adaptation (TENT) as robustness baselines [46],[47]. 

Document any preprocessing that alters intensity statistics—such as metal-artifact reduction (MAR) in CBCT—and 

analyze downstream impact [26]. 

2.8.4 Computational efficiency and deployment artifacts. 

Provide batch-1 latency and memory footprint on intended hardware, plus throughput at clinical resolution. 

Release structured outputs (DICOM-SR/JSON) and frozen thresholds for audits and PACS/RIS integration. 

2.8.5 Ethics, privacy, and fairness (brief). 

Favor multi-site collaboration—including federated training—to expand diversity without centralizing PHI, and 

preserve site-level audit trails to enable accountability. When privacy-enhancing technologies are used, report formal 

parameters (e.g., (ε,δ) (\varepsilon, \delta) (ε,δ) for differential privacy) alongside the measurable utility impact at 

clinically relevant operating points. Finally, publish subgroup audits (age/sex/device/site) and probe for shortcut 

learning (e.g., acquisition markers, metal artifacts) to ensure equitable and robust performance across populations. 

3. Literature Review and Critical Analysis 

This review synthesizes evidence by modality (intraoral RGB; panoramic radiography OPG/DPR; 

periapical/bitewing; 3D CBCT and CBCT–IOS fusion) and by task design (classification, detection, segmentation, 

Seg→Cls). We prioritize studies reporting explicit metrics and clinically interpretable operating points, with thresholds 

pre-specified on validation and results summarized at those operating points (e.g., specificity ≥ 0.90 with sensitivity/PPV 

and 95% CIs) per contemporary reporting guidance [40]. 

3.1  Intraoral RGB (screening, grading, tele-dentistry) 

Across standardized photo capture, multi-label screening and targeted grading are consistently feasible. 

Preprocessing typically combines white-balance or color constancy with bounded photometric jitter and ROI-centric 

crops. Mix-style regularizers appear when labels are limited. Lightweight backbones dominate for accuracy–efficiency, 

and several works add saliency to aid plausibility review. 
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Representative evidence includes early gingivitis detection from intraoral photos using CNN/detector pipelines 

[12], broad multi-label screening at the image level with explicit macro-F1/PR-AUC reporting [11], and condition-

specific grading of tooth wear with high agreement.  

Further, lightweight ensembles (VGG/MobileNet/Inception) achieve strong internal accuracy at low latency, while 

fuzzy rank-based ensembles with uncertainty targeting heterogeneous capture report robust performance on public 

sets. Chairside-oriented MobileNetV2 models augmented with Grad-CAM illustrate edge-efficient inference and 

clinician-readable overlays. A comparative transfer-learning benchmark focused on dental disease classification helps 

position backbone trade-offs specifically for RGB tasks [48].Representative RGB studies and their key outcomes are 

summarized in Table 7. 

3.2  Panoramic radiographs (OPG/DPR): multi-finding screening and staging 

OPG offers jaw-wide context but is sensitive to magnification and overlap. Baseline screeners underscore the value 

of careful grayscale normalization and multi-scale context [6]. Staging studies align predictions to clinical definitions 

and increasingly emphasize calibrated operating points and external cohorts as the logical next step [10],[18]. 

Architecturally, modern convnets (e.g., ConvNeXt) and attention models (e.g., Swin) capture long-range structure at 

higher input resolutions; hybrid CNN+ViT approaches also appear with confidence estimation to support thresholding 

and triage workflows [54]. Pediatric OPG work explores age-aware modeling and highlights cross-site shift as a key 

limitation [82]. Methods that pair deep CNN features with classical classifiers (e.g., SVM) can deliver high agreement 

when labels are limited, albeit with two-stage complexity. Broadly, reported results suggest competitive AUC/F1 on 

internal cohorts, with backbone and resolution choices materially influencing performance [13]. see Table 7. 

3.3  Periapical/bitewing radiographs: detection and Seg→Cls 

Foundational pipelines established feasibility for tooth detection/numbering on periapical radiographs, providing 

reference baselines and mAP by tooth index [49]. For lesions, instance/semantic segmentation—alone or as a front-end 

to a final classifier (Seg→Cls)—consistently improves sensitivity to small, low-contrast targets relative to detection-only 

approaches, at increased annotation cost. Modern convnets trained with gentle radiograph augmentation preserve faint 

radiolucencies and yield competitive AUC/PR-AUC, while emphasizing the need for cross-site testing [50]. 

3.4 3D CBCT and CBCT-IOS fusion 

 CBCT contributes volumetric tooth–bone detail; IOS adds accurate surface geometry. Fusion improves anatomical 

completeness when registration QA and intensity harmonization are enforced, with studies reporting higher planning 

accuracy versus single-modality inputs [13]. Metal-artifact reduction (MAR) enhances visibility yet can alter intensity 

statistics; both parameters and downstream effects should be documented and audited [26]. Cross-cutting methods: 

imbalance, calibration, and explainability. 

3.5 Cross-cutting observations 

Across modalities, three patterns recur. First, conservative, modality-aware preprocessing (normalization for OPG; 

color stabilization for RGB) supports stable training and plausible overlays [6],[11],[83]. Second, segmentation or 

Seg→Cls tends to boost sensitivity for subtle, small targets in periapical tasks, with dataset resources emerging to 

standardize comparison and reporting. Third, hybrid or attention-augmented encoders help capture long-range context 

in OPG; several groups pair these with confidence measures to aid threshold selection and reader workflows [54],[82]. 

External, cross-site validation remains the main limitation cited across studies. 

Table 7. Representative recent studies (abridged, organized by modality). 

Modality Study Problem & 

design 

Key contribution Limitations/notes Results (brief) 

RGB Alalharith 

et al., 2020 

[12] 

Gingivitis 

detection from 

intraoral 

photos 

(CNN/detector) 

Standardized 

capture + ROI 

improves 

grading/detection 

Needs imbalance 

handling & calibration 

AUC/Acc. improved 

vs. naïve 

preprocessing   



Dasinya Journal for Engineering and Informatics. 2025, 1, 7. 13 of 19 
 

 

RGB Park et 

al., 2022 

[11] 

Multi-label 

intraoral photo 

screening 

Feasible broad 

screening on RGB 

Heterogeneous capture; 

threshold effects 

Macro-F1/PR-AUC 

reported; PPV 

depends on 

threshold.  
RGB Ikhwani 

et al., 2024 

[48] 

Comparative 

transfer 

learning for 

dental disease 

classification 

Side-by-side 

backbone 

benchmarking for 

RGB tasks 

Dataset 

diversity/standardization 

Competitive 

 accuracy across TL 

backbones.  

OPG Zhu et al., 

2023 [6] 

OPG multi-

disease CNN 

Normalization + 

multi-scale 

context 

Limited interpretability 

reporting 

Competitive AUCs 

(internal).  

OPG Almalki 

et al. 

(2022) [13] 

OPG model 

benchmark 

Baselines; effect 

of preprocessing 

Dataset variability Backbone/resolution 

materially affect 

AUC/F1. 

 

OPG Li (2025); 

Shon 

(2022) 

[10], [18] 

Periodontitis 

staging on 

OPG 

Clinically aligned 

outcomes 

Geometry sensitivity; 

calibration needed 

Stage-wise F1/κ; 

sensitivity at set 

specificity. 

  
Periapical Liu et al., 

2024 [50] 

Periapical 

lesion 

detection with 

ConvNeXt 

Modern convs + 

gentle 

augmentation 

Needs cross-site testing Competitive 

AUC/PR-AUC; 

preserves faint 

lesions.  
3D/Fusion Hegazy et 

al., 2023 

[26]  

CBCT MAR Artifact reduction 

improves inputs 

MAR side effects to 

track 

Improved SNR and 

downstream 

accuracy 

3D/Fusion Liu et al., 

2023 [13] 

Deep 

CBCT↔IOS 

fusion 

Better anatomical 

completeness 

Registration QA 

mandatory 

Higher planning 

accuracy vs. single 

modality 

Abbreviations: AUC = area under the ROC curve; PR-AUC = area under the precision–recall curve; PPV = positive predictive value; 

κ = Cohen’s kappa; mAP = mean average precision; IoU = intersection over union; ECE = expected calibration error; SNR = signal-

to-noise ratio; TL = transfer learning. 

4. Discussion and Model Analysis 

In this section, we translate the literature synthesis into practical design guidance. We begin with backbone families 

and their trade-offs (§4.1), then map clinical questions to task heads (§4.2), formalize operation under class imbalance 

and probability calibration (§4.3–§4.4), and close with engineering considerations for deployment (§4.5). 

4.1 Backbone families: practical trade-offs 

• ResNet-50 / DenseNet-121. Reliable defaults for radiographs and RGB under constrained data; calibrate 

predictions to mitigate over-confidence on single-center cohorts [27,28]. 

• EfficientNet-B0/B3, MobileNetV2/V3. Strong accuracy–efficiency for chairside/edge use; report ECE and apply 

temperature scaling before fixing thresholds [32,20] 

• ConvNeXt / Inception / Swin. Favor when long-range, multi-scale context is essential (OPG, multi-finding). 

Check batch-1 latency and memory footprint at clinical resolution [34,30] 

• ViT. Powerful global context with large-scale pretraining, hybrids or Swin often proves more data-efficient in 

medical imaging [4]. 
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Takeaway : Start conv-first for limited data or edge constraints; escalate to Swin/hybrids for large-FOV OPG or 

3D contexts when compute and data allow. A side-by-side of backbone families, data needs, and dental fit is provided 

in Table 8 . 

4.2 Task heads vs. clinical questions 

• Classification: best for screening; requires calibrated thresholds and a clear intended use (triage vs. confirmatory) 

[20]. 

• Detection: localizes focal findings (e.g., proximal caries). Use Focal Loss for class/anchor imbalance [17]. 

• Segmentation: needed when geometry/staging matters (bone loss, lesion extent); report Dice/IoU and small-

structure analyses [18,19]. 

• Seg→Cls (segmentation-assisted classification): two-stage (masks → region features → class) that improves 

sensitivity to small, low-contrast lesions and enables plausibility overlays; the workflow is illustrated in Figure 3. 

Trade-offs are extra annotation and two-stage complexity [9,12]. 

• DETR-style: cleaner priors with end-to-end set prediction, but typically more data-hungry and slower to 

converge [39]. 

To turn these principles into quick, actionable choices, Table 8 provides a concise map that links each clinical 

question to the most suitable head (Classifier / Detector / Segmenter / Seg→Cls / DETR-style), detailing outputs, 

preferred use cases, key pros/cons, typical dental applications, and practical notes (e.g., calibration, class-imbalance 

handling). Read Table 8 alongside Figure 3 and report under imbalance with PR-AUC in addition to ROC-AUC, 

evaluated at a pre-specified specificity (e.g., ≥0.90) with sensitivity, PPV, and 95% CIs. 

Table 8. Task heads: output, when to prefer, pros/cons, and typical dental use 

(Families are representative, not exhaustive. Select according to data scale, resolution, and deployment constraints.) 

Head Output Prefer when… Pros Cons 
Typical dental 

use 
Notes 

Classifier 
Image/region 

label 

Screening; global 

status 

Simple; 

fast 
No location 

RGB multi-label; 

OPG screening 

Calibrate 

thresholds  

Detector 
Boxes + 

scores 

Focal lesions; 

triage 

Localizes 

findings 

Misses 

shape 

Caries/periapical 

cues on BW/PA 

Focal loss helps 

[17]  

Segmenter 
Pixel/voxel 

mask 

Geometry/staging 

needed 

Precise 

extent 

Annotation 

cost 

Bone loss; 

periapical masks 

Report 

Dice/IoU[18,19]  

Seg→Cls 

Mask 

features → 

class 

Small/low-

contrast lesions 

Boosts 

sensitivity 

Two-stage 

complexity 

Periapical 

radiolucencies 

Good for 

subtle cues 

[9,12]  
DETR-

style 
Set of objects 

End-to-end, fewer 

priors 

Clean 

design 

Data-

hungry 

Panoramic multi-

finding 

Longer training 

[39] 

Metrics note. For detection, add AP/mAP alongside PR-AUC; for classifiers, report PR-AUC and sensitivity/PPV at pre-specified 

specificity. 

4.3 Imbalance, thresholds, and calibration 

Under skew, we recommend treating PR-AUC as mandatory alongside ROC-AUC and pre-specifying a fixed 

specificity (e.g., ≥ 0.90) with sensitivity/PPV and 95% CIs, following TRIPOD+AI and standard imbalanced-data practice 

[27,35]. Temperature scaling and reliability diagrams (ECE) turn scores into decision-useful probabilities [20]. For safety, 

adopt selective prediction to abstain on low-confidence cases [41]. 

4.4 Interpretability and reader workflow  

Grad-CAM overlays guide plausibility checks and error curation; IG/SHAP add cohort-level insigh . Prospective 

reader studies are still sparse, but XAI panels are routinely requested by clinicians and can shorten adjudication in 

discordant cases when presented with structured summaries (per-tooth/per-region outputs) [42-44].  
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4.5 Engineering for deployment  

Clinical viability requires disciplined engineering: pinned seeds/packages; saved configs; export to 

ONNX/TensorRT with FP16/INT8 as appropriate; batch-1 latency and memory footprint on target hardware; structured 

outputs (DICOM-SR/JSON); model cards and a fail-closed/abstention policy [27].   

5. Challenges 

This section consolidates the principal barriers to reliable dental AI—data/label quality, class imbalance, domain 

shift, multimodal fusion, calibration/uncertainty, and clinician-usable explainability—and frames concrete safeguards 

for each. 

5.1 Data scarcity, label quality, and governance  

Multi-site, diverse datasets remain rare; label noise (e.g., subtle proximal caries) is common. Best practice: patient-

level splits, site/scanner stratification, ≥2 expert readers with blinded re-reads, and a clear hierarchical taxonomy; report 

κ for agreement [27].  

5.2 Class imbalance and clinically aligned operation 

Imbalance is the norm in dental imaging: Combine data-level remedies (minority oversampling + stronger 

augmentation) with loss-level choices (class-weighted CE, Focal Loss, and Unified Focal Loss for segmentation) [39]. 

Because clinical adoption hinges on specificity-constrained operation, thresholds must be pre-specified on validation 

data (e.g., specificity ≥ 0.90) and results reported at those thresholds (sensitivity and PPV with 95% CIs), not only overall 

AUCs [17-19,35]. 

5.3 Domain shift and cross-site generalization 

Cross-site performance often drops due to device/protocol differences. Include external cohorts and site-wise 

reporting; benchmark domain adaptation and test-time adaptation baselines (DANN, Deep CORAL, TENT) [46,43,47]. 

For CBCT, disclose MAR and its effect on intensity statistics [26]. 

5.4 Multimodal fusion pitfalls 

Fusion helps only with accurate registration and harmonized inputs. Enforce registration QA; analyze missing-

modality scenarios; ablate against single-modality baselines [42].  

5.5 Calibration, uncertainty, and selective prediction 

Modern networks are over-confident; apply temperature scaling; quantify ECE; explore ensembles or MC-dropout 

to enable risk-coverage curves and abstention [44].  

5.6 Explainability that clinicians can use 

Grad-CAM, Integrated Gradients, and SHAP assist plausibility checks and error triage but are not proof of 

correctness [44]. Reader-friendly panels should align saliency with known radiologic signs and surface shortcut cues 

(acquisition markers, metal artifacts). 

5.7 Reproducibility and reporting 

Follow TRIPOD+AI: transparent splits; internal/external results; ROC-/PR-AUC; per-class precision/recall/F1; κ; 

Dice/IoU; calibration plots; 95% CIs; DeLong for correlated AUCs; decision thresholds; latency/memory [27].  

5.8 Privacy, fairness, and auditing 

Federated learning requires audit trails (data curation, update logs, fairness checks); if using differential privacy, 

report (ε, δ) and the utility trade-off (e.g., ΔPR-AUC at fixed specificity). Publish subgroup metrics (age/sex/device/site) 

and discuss shortcut risks [44].  

6. Future Directions 

• Label-efficient learning at scale. Combine self-supervised pretraining with semi/weak supervision to reduce 

annotation burden while improving recall and calibration across modalities. 
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• Routine shift-robustness. Make domain adaptation (DANN/Deep CORAL) and test-time adaptation (TENT) 

standard baselines; always include site-wise deltas on external cohorts. 

• Calibration-first pipelines. Treat calibration and uncertainty as first-class outcomes — publish reliability 

diagrams/ECE, Brier, and define abstention policies tuned on validation [34]. 

• Clinically usable fusion. Standardize CBCT↔IOS protocols (registration QA metrics, harmonization) and document 

MAR side-effects; evaluate against robust single-modality baselines [30,31,42]. 

• Reader/workflow studies. Move beyond retrospective metrics to prospective, multi-center reader studies tracking 

time-to-decision, discordant-case triage, and the utility of XAI overlays [44]. 

• Privacy-preserving collaboration with auditing. Develop federated frameworks with verifiable site-level audits 

(quality, fairness, drift) and quantify DP trade-offs on sensitivity at fixed specificity. 

• Decision rules under constraints. Provide practical “when-to-use-what” guidance (conv vs. transformer; classifier 

vs. detector vs. segmentation vs. Seg→Cls) keyed to data scale, lesion size/contrast, FOV, and latency/memory 

budgets (§§2.5, 4). 

7. Recommendations 

In summary, we recommend: 

7.1 Data & labeling 

Split at the patient level, stratify by site/scanner; include ≥ 1 external cohort [27,44]; Publish a labeling protocol 

(taxonomy + decision rules) and an adjudication flow (≥2 experts; ≈10% blinded re-reads); report inter-rater κ; When 

dense masks are costly, combine self-supervised pretraining with semi/weak supervision rather than shrinking scope. 

7.2 Objectives & metrics 

Treat PR-AUC as mandatory alongside ROC-AUC for imbalanced problems; Pre-specify thresholds on validation 

(e.g., specificity ≥ 0.90), then report sensitivity and PPV with 95% CIs at those fixed thresholds on internal and external 

tests; Use task-appropriate metrics: mAP/AP (detection), Dice/IoU (segmentation), and per-class precision/recall/F1 

(classification). 

7.3 Calibration & uncertainty 

Apply temperature scaling (or isotonic) and publish reliability diagrams with ECE (optionally Brier); Define a 

selective-prediction policy (when to abstain) and quantify the risk–coverage trade-off. 

7.4 Shift robustness 

Provide site-wise performance and cross-site deltas; where relevant, add domain adaptation or test-time 

adaptation baselines. For CBCT, document MAR usage and intensity harmonization and analyze their impact. 

7.5 Backbones & heads (fit to constraints) 

Choose encoders/heads by data scale, lesion size/contrast, resolution, and latency/memory budget (see §4 tables); 

Prefer Seg→Cls when small, low-contrast lesions are clinically critical. 

7.6 Explainability (XAI) 

Provide clinician-readable panels (Grad-CAM / Integrated Gradients / SHAP), sanity checks, and failure galleries 

linking saliency to recognized radiologic signs. 

7.7 Engineering & deployment 

Report batch-1 latency, memory footprint, and throughput at clinical resolution on target hardware; Emit 

structured outputs (DICOM-SR/JSON) with per-tooth/per-region fields to ease PACS/RIS integration; Release model 

cards (intended use, cohorts, thresholds, limitations) and document fail-closed/abstention behavior; Pin seeds/packages, 

track configs; export for inference (ONNX/TensorRT; consider FP16/INT8). 
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7.8 Privacy & fairness 

In federated settings, define who audits site contributions, fairness, and drift; publish audit summaries; If using 

differential privacy, report ε/δ and the performance impact at fixed specificity. 

7.9 Reproducibility & transparency (add) 

Provide code and exact configs, dataset split manifests, and versioned model artifacts sufficient for third-party 

replication; Align reporting with TRIPOD+AI items (checklist in supplement). 

7.10 Post-deployment monitoring (add) 

Establish a plan for monitoring calibration and performance drift, periodic re-calibration, and subgroup audits; log 

abstentions and clinician overrides. 

7.11 Practical deployment rule 

If, after calibration, specificity-constrained targets on an external cohort are not achieved, the model must be 

deployed only as a second reader with selective abstention—never as an autonomous gatekeeper. Promotion to 

autonomous use should occur only after the model meets and sustains those externally validated, specificity-

constrained targets under post-deployment monitoring. 

8. Conclusion 

This review synthesizes DL methods for assessing dental anomalies and diseases across intraoral RGB, BW/PA 

radiographs, panoramic OPG, and 3D CBCT/IOS, emphasizing modality-aware preprocessing, imbalance-aware 

objectives, and calibration as prerequisites for decision-useful AI. Compared with prior surveys, we center clinically 

constrained operation—pre-specified, high-specificity thresholds with calibrated probabilities and selective 

abstention—alongside engineering artifacts (latency, memory) and structured outputs for integration. Persistent gaps 

include small single-center datasets, limited cross-site robustness, under-reported calibration/uncertainty, and scarce 

prospective reader/workflow studies. Moving forward, label-efficient learning, routine shift-robustness baselines, and 

federated, auditable collaboration are essential. Critically, site-stratified external validation should be a gating criterion 

before deployment. With these guardrails, dental AI can progress from retrospective promise to dependable, safety-

preserving and workload-reducing support that augments—rather than replaces—expert judgment. 
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