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Abstract

Recent advances in deep learning have significantly transformed medical diagnostics,
particularly in dermatology. Accurate skin disease detection and classification
areessential for effective treatment and improved patient outcomes. This systematic
review examines deep learning approaches, including Convolutional Neural Networks
(CNNs) and transfer learning, for automated dermatological diagnosis. Public datasets
such as HAM10000 and ISIC play a key role in training robust models; however,
challenges including dataset imbalance, disease heterogeneity, and overfitting remain.
Techniques such as ensemble learning, attention mechanisms, explainable artificial
intelligence, data augmentation, hybrid models, and task-specific loss functions have been
shown to enhance accuracy, robustness, and interpretability. This study follows a
systematic review methodology in accordance with the PRISMA guidelines. The review
synthesizes 17 studies published between 2021 and 2024, highlighting the potential of
deep learning to support scalable and reliable dermatological diagnostic systems.

Keywords: Deep Learning; Convolutional Neural Networks (CNN); Transfer Learning;
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1. Introduction

Skin cancer is one of the most prevalent cancers globally, imposing a significant clinical burden on healthcare
systems and presenting serious quality-of-life challenges for patients. Skin diseases encompass a wide range of issues,
from benign dermatological disorders to rare and complex conditions. These conditions present significant challenges
to the field of dermatology due to their intricate appearances and potential health impacts. Early and accurate
identification of skin diseases is critical for timely treatment, and recent Al-driven tools have both accelerated and
sharpened this process in clinical settings. Traditional diagnostic methods often rely on the dermatologist's judgment,
which can be constrained by factors such as availability, accessibility, and the subjective nature of visual examinations,
making them prone to errors. Recent advancements in artificial intelligence and deep learning have opened new
pathways to automate the detection and classification of skin diseases [1].

Convolutional Neural Networks (CNNs), along with other deep learning methods, have become an effective
instrument in medical diagnostics. They help to automate and improve the diagnostic process, which results in better
patient outcomes and reduces the workload of medical specialist [2]. The Convolutional Neural Networks are able to
learn complex features of images with consideration of large annotated data sets and induce significant improvement
on di-agnostic accuracy with minimum human intervention [3]. Other than that, deep learning architecture selection is
the key to the success of skin disease detection systems. Different architectures have been studied and combination of
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deep learning and transfer learning methods has also increased the efficiency of these systems. This method is especially
applicable to medical imaging, where information can be scarce, and it might need re-labeling. By exploiting the
acquired features of large datasets, including ImageNet, before refining them on task-specific tasks, e.g. skin diseases
classification, such models can greatly decrease training time and increase accuracy by exploiting the acquired features
of large datasets [4]. In addition, Ensemble learning techniques involving the use of more than one model have been
demonstrated to improve the classification accuracy by alleviating the weaknesses of single models [5].

In addition to the importance of the deep learning model, it is also important to select the dataset. The ability of
such models to process skin disease datasets enables creation of strong classifiers to perform well in the generalization
of different populations and skin types [6,7]. This diversity of diseases manifestations and types of skin exhibited in this
database gives a strong basis on which models can be successful in detecting and differentiating different classes of skin
disorders [8].

Although the progress of deep learning in skin diseases diagnosis is promising, there are still a number of
problems. The issues of overfitting, large labeled datasets and interpretability of model predictions remain major
challenges [9]. In addition, problems like skew of the dataset where some skin diseases are underrepresented may lead
to biased predictions in the models [10]. Moreover, the application of these models to the clinical practice also requires
a close attention to the ethical considerations, data privacy, and the inclusion of Al systems into the current patterns of
work of the healthcare practices [11]. These difficult situations are important aspects that need to be addressed in order
to ensure a successful implementation of the deep learning technology in dermatology. There is a need to make sure
that these technologies will aid and support, but not substitute the choices made by the healthcare professionals [12].

This review synthesizes recent deep learning methods, CNNSs, transfer learning, ensembles, XAI applied to skin
disease image datasets. Section 2 presents cover background. The Methodology is presented in Section 3. The results of
the review analysis, including the most significant literature, are presented in Section 4. Challenges and Future Work
can be found in Section 5. Finally, Section 6 provides a conclusion of the research findings.

2. Background and Theoretical Framework

2.1 Skin Diseases and Their Impact

The fact that skin diseases are visible and prevalent makes them quite challenging to diagnose and thus demand
accurate and specialized diagnostic tools [13]. The current developments in deep learning methods have demonstrated
the potential to increase the precision of skin disease detection, upon which early treatment and intervention are based.
Early diagnosis also translates into improved clinical outcomes of the disease and costs incurred in the healthcare
management of advanced diseases are minimized [14]. Additionally, the knowledge of the psychosocial effects of skin
diseases can enable healthcare professionals to create holistic care plans that would support both physical and
psychological requirements [15].

2.2 Deep Learning in Medical Image Analysis

A breakthrough in (AIl) and especially deep learning (CNNSs), deep residual networks and transformer
architectures has facilitated the classification, diagnosis and segmentation of lesions on the skin with precision and
without human intervention. Detection of skin diseases in dermatoscopic image scans and automated detection of
histopathological images are just some of the applications that have shown higher diagnostic capabilities than the
conventional methods [16]. Recent studies have focused on improving the model robustness and generalizability
through learning multi-scale features, attention and with large annotated data sets [17,18].

Pre-processing Segmentation Features Extraction Classification
Input Lesion Image + Hair and marker masks removal—- « Manual (performed by experts) —#{+ Manual (shape, colour and texture) + ML/DL methods
+ Image enhancement + Automatic (using ML/DL methods) + Automatic (using ML/DL methods)

Figure 1. CAD pipeline for skin diseases image analysis.
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As shown in Figure 1. typical computer-aided diagnosis (CAD) pipeline of dermoscopic images, the raw input
lesion image is the starting point of the pipeline. then is followed by pre-processing steps, which involve hair removal,
marker removal and contrast enhancement. This is followed by segmentation that can be done manually by experts or
automatically using (ML) or (DL) techniques. Features are extracted, either manually by using ML models or
automatically by using DL models. These characteristics are eventually fed into classification model to generate a
decision.

2.3 Deep Learning Techniques for Skin Disease Detection and Classification

The latest developments in deep learning methods have been very beneficial in the process of detection and
classification of skin diseases. Different methodologies such as CNNs have been utilized to automate the classification
process and they have proven to be highly accurate to identify different dermatological conditions. CNNs are enhanced
versions of the Artificial Neural Networks (ANNs) which build on the principle of the ANNs by adding another layer
of hidden features to the network. An example of this network structure which is deepening is CNNSs, as depicted in
Figure 2. The effectiveness of hybrid models is shown by such hybrid architectures as U-Net and DenseNets [19], which
combine both spatial and contextual features. Moreover, the emphasized models, such as CNNs, employ the methods
of transfer learning and ensembles to enhance the classification accuracy. Moreover, data augmentation and pre-trained
models have also contributed to performance improvement to a considerable extent [20].

Additionally, research has highlighted the transfer learning and ensemble techniques to increase the performance
of classification, especially in the context of multiclass [21]. Combining image processing methods with deep learning
systems has also enhanced the accuracy of the diagnosis and provided more effective computer-aided diagnosis
systems. These developments have shown promising clinical decision support outcomes in diagnostic errors reduction
and helping dermatologists detect skin cancer at its early stages [22].

Skin Disease Images Deep Learning Methodologies
Acquisition Dataset Convolutional Neural Networks (CNNs)
Input Layer Improved ANNs with More Hidden Layers
Hybrid Architectures Enhancement Methods
U-Net Transfer Leaming
DenseNets Ensemble Techniques

Spatial Features Data Augmentation

Contextual Features Pre-trained Models

Convolution+Pooling Image Processing

Clinical Applications Output

Improved Classification Accuracy

Clinical Decision Support e e
Early Detection of Skin Cancer Classification

7+ Classes

Figure 2. Advanced Deep Learning Techniques for Skin Disease Classification.

Figure 2. illustrates an abstracted DL pipeline to analyze skin diseases, in which a dermoscopic image is first used
and a multiclass diagnosis is the final step. CNNs further improved ANNSs with extra hidden layers learn fine diseases
characteristics, and hybrid models such as U-Net and DenseNets combine space and context information. Transfer
learning, ensemble approaches, data augmentation and image-processing pre-steps can also enhance performance so
that they are correctly classified into seven and above disease categories. This technique is built into clinical decision
support and helps to minimize diagnostic errors and detects skin cancer early.

3.4 Skin Diseases Datasets
2. 4. 1. Dermatoscopic Datasets

Deep dermoscopy is an important non-surgical procedure to determine the high-resolution images of the
subsurface skin architecture that greatly improves the early melanoma and other skin diseases detection. With the
growing use of Al, ML, and DL in this domain, there is a growing need to have publicly available image datasets.
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Such dermoscopic datasets can be used to train and fine-tune the AI, ML, and DL models to guarantee their precise
functioning with a wide range of skin types and diseases variations [23]. The most popular public dermoscopic image
datasets are summarized in Table. 1, which provides detailed information about each dermoscopic image datasets that
are publicly available [24].

Table 1. Skin Disease Datasets Overview.

Dataset Name Collection Site Year No. Disease Dataset Size

ISIC Memorial Sloan Kettering Cancer Center 2020 5 11,108

BCN20000 Hospital Clinic Barcelona 2019 9 19,424

Medical University of Vienna and skin cancer

HAM10000 practice of Cliff Rosendahl in Queensland 2018 8 10,015
SNU University of Edinburgh 2018 134 2,201
Asan Asan Institutional 2017 12 17,125
PH2 Dermatology Service of Pedro Hispano Hospital 2013 3 200

2.4.2. HAM-10000 Datasets

The HAM10000 dataset is a very important resource in skin disease detection and classification. This dataset
contains 10,015 dermatoscopic images that are divided into seven different types of skin diseases, as they are shown in
Table. 2, and it shows how diseases are classified under the HAM10000 dataset.

Table 2. Diversity of HAM-10000 Dataset.

Diseases Name Category Code No. of Images Total Samples (%)

Melanocytic nevi NV 6,705 66.95%

Melanoma MEL 1,113 11.11%

Benign keratosis-like lesions BKL 1,099 10.97%
Basal cell carcinoma BCC 514 5.13%
Actinic keratoses and intraepithelial carcinoma AKIEC 327 3.27%
Vascular lesions VASC 142 1.42%
Dermatofibroma DF 115 1.15%

Total number of samples 10,015 100.00%

The dataset has a 644 x 450-pixel image resolution. The dermatoscopic images are of JPEG format. Diversity of the
dataset makes the algorithms more robust and they can be generalized to different skin conditions [25], Figure 3. below
illustrates the diseases.

Melanocytic nevi Melanoma Benign keratosis Basal cell carci Actinic ker Dermatofibroma Vascular lesions

"4
a be

Figure 3. HAM-10000 skin disease categories.

2.5 Explainable Al and Skin Disease Classification

Explainable AI (XAI) techniques offer interpretable outputs, which can be validated and trusted by physicians with
Al-based conclusions [26,27]. Moreover, deep learning models tend to make decision-making processes more
complicated and therefore become inefficient in high-stakes settings, including healthcare. Thus, to ensure the
successful implementation of Al in clinical practice, it is necessary to increase the level of clarity.
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In order to elaborate on the intensive study in fashion, a number of methods have been proposed. Explanatory
clinical imaging artificial intelligence is inherently human-oriented and is informed by the requirements and concepts
of medical staff members [28]. Through these interpretative measures, the clinical subject will be able to increase the
credibility and reliability of the adoption of Al in the healthcare sector.

3. Methodology

3.1 Aim and Scope

This study examines and discusses the most recent developments in deep learning methods that can be used to
detect and classify skin diseases. It will determine the efficacy of different architectures and approaches such as CNN
and transfer learning to overcome such issues as imbalance in the dataset and image diversity. The proposed research
will provide the advantages, drawbacks, and prospects of Al-based clinical technology in dermatology, thus enabling
more efficient, precise, and convenient clinical practice.

The current review paper summarizes the state-of-the-art in the field of skin disease detection and classification
with the use of deep learning, with special attention to the utilization of skin disease datasets, in particular, HAM10000.
With the ability of artificial intelligence, such systems can provide quick, precise, and scalable remedies in the detection
of skin conditions, which will eventually result in better patient care and patient outcomes. Deep learning deployment
in the clinical practice is bound to revolutionize the sphere of dermatology, enabling to realize the early detection and
intervention more readily than ever before.

3.2 Search Strategy and Data Collection

This was done using a strategic key word selection process in order to come up with relevant studies. The keywords
were selected based on the main ideas of the research in particular, skin diseases, deep learning architectures, and
classification tasks and turned into a list of seed terms and controlled vocabulary descriptors. As an example, terms
such as “skin lesion,” “dermatoscopic image,” and “skin disease” were paired with methodological descriptors

Zan ”ou

including “deep learning,” “convolutional neural network (CNN),” “transfer learning,” “vision transformer,” and
“explainable AI (XAI)” synonyms and abbreviations were combined using OR operators, while distinct concepts were
linked with AND operators (e.g., (“skin diseases” OR “dermatoscopic image”) AND (“deep learning” OR “CNN” OR
“transfer learning”) AND (“classification” OR “detection”)).

Based on this search strategy, the queries were executed across four major scientific database, IEEE Xplore, Scopus,
ScienceDirect, and MDPI and filtered them to peer-reviewed articles, English-language, full-text articles published
between 2021 and 2024. The first results were filtered by relevance and applied to further narrow down our list of
keywords by adding new words as they were discovered like “attention mechanism” or “data augmentation” to
increase precision without reducing recall. Lastly, inclusion and exclusion criteria were used to bring up the final corpus

of studies that form the basis of this review.

3.3 Review Design and PRISMA Compliance

This study was conducted as a systematic literature review in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PRISMA framework was adopted to ensure
methodological transparency, reduce selection bias, and provide a reproducible process for identifying, screening, and
selecting relevant studies. Accordingly, the review followed four structured phases: identification, screening, eligibility
assessment, and final inclusion, as illustrated in the PRISMA flow diagram Figure 4.

A total of 94 records were identified through searches of IEEE Xplore, Scopus, ScienceDirect, and MDPI. After
removing 13 duplicates, 81 unique articles remained and were assessed at the screening stage, with all proceeding to
full-text eligibility evaluation. During eligibility assessment, 64 studies were excluded due to insufficient results,
outdated or non-novel methods, irrelevance to Al-based skin disease classification, or misalignment with the review
scope, while 12 articles were unavailable in full text. Consequently, 17 studies satisfied the inclusion criteria and were
retained for qualitative synthesis.
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Figure 4. Prisma diagram.

Figure 5 summarizes the methodological distribution of the selected studies, revealing that transfer learning with
pre-trained CNNs predominates (41.2%), followed by multi-scale and hybrid architectures and advanced preprocessing
techniques (17.6% each). Explainable Al and hand-crafted feature-based approaches each represent 11.8%, indicating
the dominance of deep learning while reflecting emerging interest in interpretability and traditional methods.

Categories
Multi-Scale & Hybrid Architectures
mmm Transfer Learning with Pre-trained CNNs
mmm Explainable Al & Vision Transformers
mmm Advanced Preprocessing & Denoising
B Hand-crafted & Feature Engineering

Figure 5. Proportional Distribution of Methodological Clusters in Reviewed Studies.

While Table 3. organizes the individual papers by their respective groups. Together, they highlight where research
efforts have been most concentrated and pinpoint opportunities for further innovation.

Table 3. Papers Organized by Methodological Group.

No. Methodological Group Authors
1 Multi-Scale & Hybrid Architectures [29], [30], [31]
2 Transfer Learning with Pre-trained CNNs [32], [33], [34], [35], [36], [37], [38]
3 Explainable AI & Vision Transformers [39], [40]
4 Advanced Preprocessing & Denoising [41], [42], [43]
5 Hand-crafted & Feature Engineering [44], [45]

3.4 Study Selection Process and Eligibility Criteria (PRISMA-Guided)

The initial database search yielded 94 records. After removing 13 duplicate articles, 81 unique studies remained
for screening. During the screening phase, titles and abstracts were reviewed to assess their relevance to Al-based skin
disease classification. All records that passed this stage were subsequently evaluated in the eligibility phase through
full-text assessment. Study eligibility was determined based on predefined inclusion and exclusion criteria.
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Inclusion Criteria: To guarantee that the most pertinent and high-quality studies were included in our review, the
following criteria were used:

e  Target Al-Driven Classification: Studies need to be focused on machine learning or deep learning methods to detect
or classify skin diseases.

e  Publication: The article should be published in peer-reviewed journals that are included in one of the following
repositories: IEEE Xplore, Scopus, ScienceDirect or MDPL

e  Publication Date: Only articles published in 2021-2024 were put into consideration.

e Language and Accessibility: Full-text articles are offered in English.

¢  Methodological Transparency: Research should be sufficiently detailed in methodology, that is, the model methods
used and the image data used should be described in detail.
Exclusion Criteria: The studies were not included in the review in case they had any of the following criteria:

e  The paper is not focused on the application of Al, such as ML or DL, to the identification of skin dis-eases.
e Itis a conference abstract, editorial, letter or opinion piece which lacks original research data.
e  Studies lacking sufficient experimental or methodological detail.

e  The research itself does not use any of the following publicly available dermoscopic datasets: ISIC, HAM10000,
PH2, Dermnet.

e  Research focused exclusively on lesion segmentation without classification.
Following this selection process, 64 articles were excluded, and 17 studies met all eligibility requirements and were
included in the final qualitative synthesis.

3.5 Quality Assessment of Included Studies

To ensure the reliability and scientific rigor of the selected literature, a qualitative quality assessment was
conducted for all 17 included studies. Each paper was evaluated based on the following criteria:

e Dataset transparency: Clear description of dataset source, size, and class distribution.

e  Methodological clarity: Explicit reporting of model architecture, training strategy, and preprocessing steps.

e  Evaluation rigor: Use of appropriate performance metrics (e.g., accuracy, sensitivity) and validation protocols.
e  Reproducibility: Sufficient experimental detail to allow replication.

e  Clinical relevance: Discussion of applicability, limitations, and potential clinical impact.
Only studies that met the majority of these criteria were retained. Papers with incomplete methodological
descriptions or insufficient validation were excluded during the eligibility phase.

4. Results

4.1 Multi-Scale & Hybrid Architectures

Hu et al. in 2024, proposed a multi-scale feature fusion network based on the skilled NETV2 architecture to address
challenges in skin wound classification using the HAM10000 and ISIC2019 datasets. The model achieved an accuracy
of 94.0%, and 89.8% accuracy on the HAM10000 and ISIC2019 dataset. Such techniques that can be credited to this
performance include: restarting against class weighting, label smoothing and class imbalance. The model is effective
because of the combination of shallow and deep features that target the wound area, and solutions to problems
associated with datasets. Marking the wound area is an essential element of classifying dermoscopic images, though
the hair features also play a certain role in the process of the classification [29].

Karthik et al. in 2024, proposed a hybrid deep learning architecture where Swin Transformer was used to extract
global features and Dense Group Shuffle Non-Local Attention (DGSNLA) Network was used to extract local features.
This model was tested on HAM10000 dataset, it gave a maximum accuracy of 94.21% with recall of 96.25% when both
the networks were combined thus increasing the feature representation. Data augmentation methods and focal loss
were used to overcome the issue of class imbalance, whereas the use of both local and global features allowed the model
to handle both short-and-long-range dependencies successfully [30].
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In 2021 Srinivasu et al., suggested a classification model that was built using MobileNet V2 and Long Short-Term
Memory (LSTM) was recommended to detect skin disease using dermatoscopic images of the HAM10000 dataset. The
given model attained an accuracy of 85.34% with the use of the lightweight MobileNet V2 as a feature extractor and
LSTM to process sequential information. It is a state-of-the-art method that integrates MobileNet V2 and the LSTM
module to guarantee accurate classification of skin diseases. Also, the fine-tuning and data augmentation were utilized
to enhance the efficiency of model training. [31].

Recent innovations in multi-scale and hybrid architectures demonstrate their capabilities in terms of feature fusion
(e.g. NETV2-based frameworks), transformer-CNN hybrids of capturing global-local dependencies, as well as
light-weight CNNs coupled with sequential modeling. Nevertheless, these studies have serious limitations: they lack
sufficient ablation tests to separate architectural efforts with auxiliary methods, lack cross dataset testing (e.g.
dermoscopic versus clinical images), and do not address the computational requirements of real-world implementation.
Future studies must focus on adaptive fusion (e.g., attention-based weighting), energy efficient transformer-CNN
hybrids and intensive benchmarking on a variety of datasets in order to improve clinical relevance.

4.2 Transfer Learning with Pre-trained CNNs

Singh et al. in 2023, tested a pre-trained VGG16 model for skin disease classification by analyzing a massive dataset
of 44,000 images from Kaggle. VGG16 model with fine-tuning is an efficient extraction and classification model of
images, classifying them as benign or malignant. The model attained a high accuracy 90.1% and recall of 94. 20%. when
optimized using hyperparameters, such as the learning rate and epochs. My goal was to use the abilities of VGG16 to
recognize and categorize different skin diseases using different images, which demonstrates my strict method. The
model is also highly effective with regard to early diagnosis of skin diseases at the various stages [32].

In 2022 Anand et al., proposed a new transfer learning model to skin cancer diagnosis. The ResNet50 architecture
was further improved by adding a flatten layer, two dense layers with Leaky ReLU activation and a final dense layer
with sigmoid activation. In addition, randomness and augmentation of the dataset were implemented to determine the
stability of the model with regard to data augmentation. The ResNet50 model trained on Adam optimizer and 128 batch
size reached an accuracy of 90% with sensitivity of 74.42 and the training images were only augmented to enhance the
training accuracy of the model, virtually doubling the number of training images [33].

In 2023 Bhargavi et al., presented a model on skin diseases classification using the HAM-10000 dataset, using
InceptionResNetV2, InceptionV3, MobileNetV2, and EfficientNetB0. The authors applied data augmentation method to
counter the impact of the class imbalance and used pre-trained models to ease the burden of extracting features of
images. With the use of predictions and fine-tuning of the model layers, the proposed model was able to obtain a higher
accuracy of 81.3% with recall of 80.1% which was higher than the performance of each of the individual models. This
method helps in precise and accurate diagnosis of seven types of cancer with the use of wound images. [34].

Rangaswamy et al. in 2024, comparative analysis of skin disease classification with the InceptionV3 and VGG16,
CNN models were made on a dataset of 17,214 images of 13 distinct disease categories. InceptionV3 was the most
accurate in terms of training with an accuracy of 80.88% compared to VGG16 which had an accuracy of 74.17%.
Normalization, flipping and rotation have been used as pre-processing techniques that increase the variability of data.
Preprocessing was also done to deal with the issue of class imbalance using shear range and zoom range, which also
helped the models to make strong predictions of different diseases on the skin [35].

Jain et al. in 2021, presented six transfer learning models such as Xception, to classify seven types of cancer in the
skin based on the HAM10000 dataset. They equalized the classes by replicating the images and applying transformation
operations like rotation and zooming, the Xception model had an accuracy of 90.48% and a recall of 89.57% [36].

In 2023 Inthiyaz et al., proposed an automated skin disease detector based on CNN was suggested on the Xiangya-
Derm dataset, the largest set of clinical skin images. The researchers pre-processed the pictures by resizing the pictures
and used a Softmax classifier to classify the pictures into four classes of eczema, melanoma, psoriasis and healthy skin.
The model had an accuracy of 87.42%. It was also optimized based on data augmentation and an optimized architecture.
The features were also picked out by counting the features of all the images by downsizing the image to a single
measure, which underlines how feature consistency is important in classification [37].

Zhi et al. in 2024, suggested a multiclassification model which is derived through Inception-v2 network and focal
loss to analyze dermoscopy images. The model used data augmentation, hair removal and Grad-CAM heat maps to
enhance image preprocessing and interpretation. The model was based on the dataset of ISIC 2019 and the accuracy of
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this model was estimated to be 89.04% and recall of 90.15%. The findings indicate that focal loss can improve the
performance of the model, especially in case the dataset is unevenly distributed [38].

The effectiveness of fine-tuning and class imbalance correction methods, including focal loss and data
augmentation, are demonstrated with the help of the transfer learning methods involving the VGG16, Inception, and
Xception architectures. One of the enduring weaknesses of these approaches is that they are based on curated
dermoscopic datasets, and it limits their extrapolation to clinical contexts, where imaging conditions are heterogeneous.
Moreover, simple approaches to augmentation do not necessarily use sophisticated data generation algorithms, e.g.,
GAN: . The future studies must be based on the creation of domain adaptation models, multi-modal data (clinical and
dermoscopic) and exploration of modern loss functions, including distribution-aware margins, to achieve greater
robustness in a variety of imaging settings.

4.3 Explainable Al & Vision Transformers

Hosny et al. in 2024, a novel explainable deep inherent learning architecture proposed to classify multi-class skin
diseases was suggested, with the use of a CNN having 54 layers. This was a method of combining both inherent learning
and XAI methods to correctly recognize and categorize seven different types of skin diseases. Using the ISIC 2018
database, the model displayed a remarkable accuracy of 92.89% and sensitivity of 58.57% on the basis of the
improvements in the information flow of layers, better visualization of the features, and the sensitivity of the map to
the occlusion. The learning approach inherent in the proposed model was able to predict several different types of
disease and give visual understanding regarding explainability, and as such, it was less susceptible to error compared
to traditional shallow networks [39].

In 2023 Arshed et al., The multi-class classification of skin cancer with a Vision Transformer (ViT) model was
suggested, and it takes advantage of the feature of ViT to improve the attention drawn to the important parts of a picture
by its self-attention mechanism. This model was contrasted to 11 CNN models that applied the fine-tuning and data
augmentation strategies on the HAM10000 dataset to solve the issue of class imbalance. ViT-based model also set an
accuracy of 92.14% and recall of 92.14%, which was optimized using a mixture of fine-tuning and training. The
transformer self-attention mechanism improves the recognition of valuable features and reduces the effects of noise,
which shows the strength of this methodology [40].

ViTs and explainable convolutional neural networks are self-attention based and occlusion sensitivity
mapping-based vision transformers that provide state-of-the-art accuracy. Nonetheless, the models face the following
issues regarding computational efficiency: ViTs demand large amounts of data, and deep CNNs are complex. Also,
their explainability, especially in the clinician aligned measures, has not been quantitatively confirmed. Future research
directions involve creating hybrid ViT-CNN models to be more efficient, pretraining on large-scale medical images, and
creating standardized assessment methods of XAI to make technical explainability more consistent with clinical trust.

4.4 Advanced Preprocessing & Denoising

Kavitha et al. in 2024, proposed CNN-based skin cancer detection system utilizes the ISIC dataset. The authors
performed image preprocessing by removing hair and noise to enhance image quality, followed by the application of
and ResNet50 models for classification. This method achieved a performance of 91.32% accuracy and recall of 78.15%,
employed techniques has an enhancement, of deep learning architecture, and augmentation. This was achieved success
of this approach  implementing attributed to the implementation of training it on multiple across the convolutional
outcome classified nine different successfully of skin cancer [41].

Gururaj et al. in 2023, discussed skin cancer classification using a deep learning model with the HAM10000 dataset.
The researchers applied data preprocessing techniques, including the Dull Razor method for noise removal and
segmentation using encoder-decoder models. They utilized DenseNet169 and ResNet50 architectures for training,
achieving an accuracy of 91.2% and recall of 69.6% through under-sampling using DenseNet169 model and optimized
training over multiple epochs for both techniques [42].

In 2024 Pandey et al., a method for skin cancer detection was proposed that combines non-local means (NLM)
denoising, sparse dictionary learning, and CNNs. The HAM10000 and ISIC2019 datasets were preprocessed using NLM
to enhance image quality. After applying data augmentation and sparse dictionary learning, the trained CNN model
achieved accuracies of 85.61% for the HAM10000 dataset and 81.23% for the ISIC2019 dataset. Denoising significantly
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improved image quality and model performance, particularly by reducing residual noise, which facilitated clearer
pattern recognition [43].

The importance of removing noise and eliminating artifacts as part of improving classification performance is
emphasized in studies that focus on preprocessing methods, including hair removal and non-local denoising.
Nevertheless, preprocessing pipelines are often biased with regard to datasets, e.g. inefficient hair removal in different
skin types, and they are usually not based to measure the isolated effect of these processes on model improvements.
Future re-search ought to be directed at incorporating adaptive denoising techniques, e.g. learnable filters, into end-to-
end frame-works, and making sure that diagnostically important features are not lost in the preprocessing. Also, the
cross-domain reliability will be necessary through benchmarking with self-supervised denoising techniques.

4.5 Hand-crafted & Feature Engineering

Kumar et al. in 2024, suggested to identify multiclass skin diseases, based on new hand-crafted features of spatial,
spectrogram and cepstrum-domain features. The model has been tested on the HAM10000 and DermNet datasets and
yielded 89.71% and 88.57% accuracies respectively with 89.24% and 88.28% recall respectively. These outcomes were
achieved by optimizing features, data augmentation and hyperparameter tuning. The concatenated features utilize both
spatial and spectral information, which allows deriving more detailed information out of difficult sets of data, which
further supports the usefulness of the method [44].

A etal.in 2024, A gradual end-to-end model of skin diseases classification was suggested based on the S-MobileNet
CNN model and the HAM10000 dataset. Gaussian filtering was used to perform segmentation of the data and modified
SFTA was used to extract features. The S-MobileNet is a lightweight architecture that uses activation functions and
compression of the intermediate layer to optimize the performance of the architecture with an accuracy of 89.71% and
recall of 89.24%. S-MobileNet CNN architecture was optimized to produce low-latency results. The findings were
confirmed by 80:20 training and testing split [45].

Hybrid models that blend hand-designed spatial-spectral inputs with lightweight CNN’s are competitive in their
accuracy because they use domain-specific feature engineering. Yet, these methods tend to be ineffective in keeping up
with the changing pattern of diseases and have not been yet verified in a wide variety of individuals, including different
skin tones and atypical subtypes. Future research should integrate hand-crafted features with self-supervised
pretraining, employ Neural Architecture Search (NAS) for automated feature optimization, and prioritize the use of
inclusive datasets to ensure equitable diagnostic performance across different populations.

Table 4. Summary of Recent Studies in the Field of Skin Diseases.

Authors, . Dataset A S .
1\1{e:rrs Model Technique Dataset gizze ((;:) (;ZI)S Description

Multi-scale feature
Class fusion network

[29] weighting, integrating shallow
HAM10000 10,015 94.0 917
H 1., Multi-scale NETV2 label ! f .
ueta ulti-scale N abe. ISIC-2019 33,569 89.8 NJ/A and deep eatufes
2024 smoothing, Focused on lesion
resampling regions and handled
hair interference.
Data Combined global and
[30] Swin Transformer augmentation, local feature extraction
Karthik et ’  focalloss HAM10000 10,015 94.21 96.25 using hybrid Swin
DGSNLA .
al., 2024 function, Transformer and
feature fusion DGSNLA networks.
Data Combined MobileNet
[31] V2 for feature

MobileNet V2, augmentation,
LSTM lightweight
architecture

Srinivasu et
al., 2021

HAM10000 10,015 85.34 N/A extraction and LSTM
for sequence handling
in dermatoscopic.
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e
[32] learning, fine-  Open- benien Zr maﬁ nant
Singh et al., VGG16 tuning, repository 44,000 90.1 94.20 8 ghant.
Focused on learning
2023 hyperparameter dataset
S rate and epochs for
optimization. s
optimization.
Data g
auementation Modified ResNet50
[33] Liak ReLU ’ architecture with
Anand et al., ResNet50 activ};tion HAM10000 10,015 90 74.42  additional layers and
2022 ! data augmentation to
Adam .
.. improve performance.
optimizer
Utilized pre-trained
InceptionResNetV2, Data vizec pre-aine
[34] InceptionV3 augmentation models for feature
Bhargavi et P ! 5 " HAM10000 10,015 81.3  80.1 extraction and
MobileNetV2, ensemble . . ..
al., 2023 .. ) combined predictions
EfficientNetB0 learning )
for improved accuracy.
A comparative study
of different image
Roboflow + processing treatments
[35] InceptionV3 Normalization, Kaggle on the nature of the
Rangaswamy P ’ . ., 58 17,214 80.88 N/A  convolutional neural
VGG16 flips, rotations Skin
et al., 2024 " networks for the study
Melanomas
so that new
approaches for a
robust prediction.
Denoising and sparse
[36] Transfer 89.57 dictionary learning
Jain et al., Xception learning, data HAM10000 10,015 90.48 (recjall) were combined to
2021 augmentation improve image quality
and categorization.
[37] Image resizing, Pre-processed clinical
ft Xi - dataset f ist
Inthiyaz et CNN with Softmax S(,) [max langya 150,223 87.42 N/A ataset Or consisTency
al. 2023 classifier, data ~ Derm and optimized CNN
v augmentation architecture.
To enhance model
functioning and
[38] Focal loss, 90.15 interpretability, focal
Zhi et al., Inception-v2 Grad-CAM, ISIC2019 25,332 89.04 ) loss and Grad-CAM
. (recall)
2024 hair removal heat maps were used
for imbalanced
datasets.
Inherent Novel CNN approach
[39] learning, XAI with layer-by-layer
hni .
Hosnyetal, 54-layer CNN  CdUeS 1o100018 15414 9289 5857  provementsand
2024 occlusion explainability for
sensitivity seven skin diseases
mapping types.
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[40] Fine-tuning,
Arshed et al., Vision Transformer data
2023 augmentation
b
Kavitha et CNN-based data !
al., 2024 .
augmentation
Dull Razor
[42] method,
. DenseNet169, encoder-
Gururaj et .
under sampling decoder
al., 2023
models, under-
sampling
143] Sparse dictionar diingae
Pandey et al., P y Lonary
2024 based CNN learning, data
augmentation
Spatial,
44 t
441 1D Multiheaded ~SPECTTO8TM
Kumar et al.,, CNN and cepstrum-
2024 domain feature
integration
Mish
activation
_ -1 4
[45] Gasu::i(:;lfilljeerti’n SFTA feature
A et al., 2024 8 extraction, layer

compression

HAM10000 10,015 92.14

ISIC 2,357 91.32

HAM10000 10,015 91.2

HAM10000 10,015 85.61
ISIC2019 25,332 81.23

HAM10000 10,015 89.71
Dermnet +25,000 88.57

HAM10000 10,015 89.71

92.14

(recall)

78.15

69.6

N/A

89.24
88.28

89.24

To resolve class
imbalance and
enhance
categorization, ViT
was used in
conjunction with self-
attention and fine-
tuning strategies.
Preprocessing and
CNN-based
architecture optimized
for feature extraction
and diverse
classification tasks.

Images to remove
noise and trained
models with
optimized techniques
over multiple epochs.

Combined denoising
with sparse dictionary
learning to enhance
classification and
image quality.
Novel methodology
combining spatial and
spectral features with
augmented data and
hyperparameter
tuning.
Developed S-
MobileNet with
lightweight
architecture and
Gaussian filtering for
segmentation.

Huetal., 2024
Karthik et al., 2024
Srinivasu et al., 2021
Singh et al., 2023
Anand et al., 2022
Bhargavi et al., 2023 .
Rangaswamy et al., 2024
Jain et al., 2021
Inthiyaz et al., 2023
Zhi et al., 2024
Hosny et al., 2024
Arshed et al., 2023
Kavitha et al., 2024
Gururaj et al., 2023
Pandey et al., 2024
Kumar et al., 2024

Aetal, 2024

a4 86 88 90 92

Accuracy (%)

94

Figure 6. Forest Plot of accuracy across different studies.
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Figure 6. synthesizes the estimates of accuracy of seventeen recent studies on the topic of skin diseases classification
and shows that there is not only methodological diversity but also variance in performance. The most efficient is
reported in [29], with its multi-scale EfficientNetV2 achieving an accuracy of 94.0, and the least one is reported in [35]
with 80.9% accuracy. These disparities are an indication of differences in preprocessing methods, feature-fusion
approaches, and dataset composition. It is important to note that transformer-based systems such as Swin Transformer
+ DGSNLA ([30]; 84.7%) and Vision Transformer ([40]; 92.1]) achieve mid and high-performance, indicating that
attention mechanisms can be useful in solving complex and multi-class problems. Existing CNN backbones, like VGG16
([32]; 90.1%), Incep-tionResNetV2 ensembles ([34]; 81.3%), and lightweight networks (e.g., MobileNet; [45]; 89.7%]) fall
between 80 and 90 percent, whereas lightweight networks (e.g., MobileNet; [45]; 89.7%]) are promising to use in
resource-constrained deployment. Performance differences also indicate dataset scale, of which big clinical repositories
([37]; 150k images; 87.4%) are compared to moderate open-access sets (Ham10000, ~10k images). In general, the plot
motivates that incorporating innovative preprocessing methods (hair removal and denoising), attention or hybrid
networks, and balanced augmentation strategies are associated with increased accuracy, which will inform future
studies to integrate these aspects to achieve effective dermatoscopic analysis.

5. Challenges and Future Research Directions

5.1 Challenges

e  (lass Imbalance and Diagnostic Risk : Publicly available dermoscopic datasets such as HAM10000 and ISIC are
inherently imbalanced, with benign diseases (e.g., melanocytic nevi) dominating the sample distribution while
clinically critical malignancies remain underrepresented. As illustrated in Figure 7, class imbalance is the most
frequently reported challenge in the reviewed literature. In real-world clinical deployment, this imbalance may
result in biased classifiers that under-detect rare but aggressive skin cancers, potentially leading to delayed
diagnosis and adverse patient outcomes. Although techniques such as data augmentation, focal loss, and
resampling partially mitigate this issue in research settings, their effectiveness in routine clinical environments
remains limited without true population-level diversity.
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Figure 7. Frequency of challenges discussed in literature.

e Data Privacy, Security, and Regulatory Constraints: The centralized collection and sharing of medical images
introduce significant privacy, ethical, and regulatory challenges that directly affect clinical adoption. Strict data
protection regulations restrict multi-institutional data pooling, thereby limiting dataset diversity and hindering
model generalization. From a clinical perspective, failure to address data governance, consent, and security
concerns can prevent regulatory approval and restrict the deployment of Al-assisted diagnostic systems in hospital
environments.
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e Model Overfitting and Generalizability: Many high-performing deep learning models demonstrate excellent
accuracy on curated dermoscopic datasets but experience substantial performance degradation when applied to
real-world clinical images acquired using different devices, lighting conditions, and acquisition protocols. This
performance gap between experimental and real-world settings is depicted in Figure 8, which contrasts model
accuracy in research environments versus clinical scenarios. Such lack of robustness poses a major barrier to clinical
translation, as unreliable predictions in routine practice could undermine diagnostic confidence and patient safety.
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Figure 8. Model Accuracy vs Clinical Settings.

e Interpretability and Clinical Trust: Despite recent advances in explainable AI (XAI), most deep learning models
remain black-box systems from a clinician’s perspective. While visualization techniques such as Grad-CAM and
occlusion sensitivity maps offer some interpretability, they are rarely validated against dermatologist reasoning or
clinical decision-making processes. In high-stakes medical environments, the absence of clinically meaningful
explanations reduces physician trust and limits the acceptance of Al-based decision support tools.

e  Limited Dataset Diversity and Health Equity Concerns: The majority of reviewed studies rely on a narrow set of
publicly available datasets, primarily HAM10000 and ISIC, as shown in Figure 9, which compares the frequency
of dataset usage across the literature. These datasets insufficiently represent darker skin tones, pediatric
populations, and rare dermatological conditions. As a result, models trained on such data may exhibit biased
performance, potentially exacerbating healthcare disparities when deployed in clinical practice.

10

Number of Papers
o

Dataset

Figure 9. Publicly dataset available.

e Integration into Clinical Workflows: Even when technically accurate, many Al models fail to account for practical
deployment constraints such as interoperability with hospital systems, workflow compatibility, and usability for
clinicians. Without seamless integration into existing standards (e.g., DICOM, HL7-FHIR) and minimal disruption
to clinical routines, deep learning models are unlikely to be adopted in real-world dermatology practice.

5.2 Future Research Directions
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To enable effective clinical translation, future research should prioritize the development of class-balanced learning
strategies using generative models such as GANs and diffusion models, combined with domain-adaptive loss functions.
Privacy-preserving learning paradigms, including federated and split learning, should be adopted to facilitate
multi-center collaboration without compromising patient confidentiality. Enhancing model generalizability through
self-supervised pretraining, cross-domain validation, and lightweight CNN-Transformer hybrid architectures will be
critical for real-world reliability.

Furthermore, standardized and clinically validated explainability frameworks must be developed to align Al
decision-making with dermatologist interpretation. Expanding dataset diversity through multi-ethnic, multi-
institutional image repositories will be essential to ensure fair and unbiased diagnostic performance. Finally, early
collaboration with clinicians, regulatory bodies, and healthcare institutions is necessary to address usability,
interoperability, and compliance requirements, thereby accelerating the safe deployment of deep learning-based skin
disease diagnostic systems.

In general, Table 5 underlines the key issues related to deep-learning-based skin-disease detection, and
classification, as well as the further research directions that should be implemented to resolve these problems. Such
challenges as class imbalance, privacy protection, robustness of models, interpretability, and clinical integration are still
fundamental barriers to the translation of these systems out of research environments into clinical practice.

Table 5. Challenges and Corresponding Future Directions.

Challenge Future Directions References
Clas.s Imbal.anc.e and Generative models, domain ac.laptation, class-balanced [291; [30]; [38]; [40].
Diagnostic Risk loss functions.

Data Privacy, Security, and  Federated/split learning, differential privacy, secure [30]; [43]
Regulatory Constraints multi-party computation. ! )
Model Overfitting and  Lightweight CNN-Transformer hybrids, self-supervised

e . " o [32]; [34]; [36]; [35].
Generalizability pretraining, cross-domain validation.
Interpretability and Diagnostic-concordance metrics, attention gating, 38]; [39]
Clinical Trust prototype learning,. T
Limited Dataset Diversity = Multi-ethnic datasets, rare pathology inclusion, style-
. ; [37]; [43]; [44].
and Health Equity Concerns transfer augmentation.
Integration into Clinical Usability trials, interoperability, regulatory [311; [33]; [45].
Workflows engagement.

6. Conclusion

This review article summarizes the major progress in the deep learning-based approaches to automation of the
skin disease detection and classification. It emphasizes significant advances that have been made by using CNNs,
hybrid models, transfer learning, and ensemble learning algorithms, which have resulted in high accuracy on large
datasets including HAM10000, ISIC and PH2. Other challenges that are discussed in the article are class imbalance, data
scarcity, and overfitting. Moreover, explainable Al methods, such as Grad-CAM and LIME, have enhanced the
interpretability of models, which is essential to make the method applicable in reality. Nevertheless, there are a few
challenges that have remained such as the demand of lightweight, streamlined architectures that can be deployed in
real-time, high noise tolerance, and high generalizability in varied datasets. The further studies should focus on the
need to develop effective, privacy-saving models and assure credible per-performance in any clinical environment. The
issues about the diversity of datasets, model strength, and data security will be critical to the successful implementation
of Al-based diagnostic instruments into practice. The combination of deep learning and dermatology is a new frontier
in enhancing the early diagnosis, treatment outcome, and patient recovery and it can transform the dermatological care
across the globe.
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