
 

 
https://doi.org/10.65542/djei.v2i1.19 

Dasinya Journal for Engineering and Informatics. 2026, 2, 6. 

 

Received: November 29, 2025; Revised: January 14, 2026; Accepted: January 16, 2026; Published: January 25, 2026; Available online: January 25, 2026. 

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) 

license (https://creativecommons.org/licenses/by/4.0/). 

Review  

Deep Learning-Based Skin Disease Detection and 

Classification: A Systematic Literature Review 

Zhehat Rebar Abdulqader 1, 2* , Araz Rajab Abrahim 3  

1 College of Education, University of Zakho, Zakho, Kurdistan Region, Iraq;  
2 Department of Information Technology, Technical College of Informatics, Akre University for Applied 

Science, Akre, Kurdistan Region, Iraq; 
3 Technical Institute of Duhok, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq;  

* Correspondence: zhehat.abdulqader@uoz.edu.krd  

Abstract 

Recent advances in deep learning have significantly transformed medical diagnostics, 

particularly in dermatology. Accurate skin disease detection and classification 

areessential for effective treatment and improved patient outcomes. This systematic 

review examines deep learning approaches, including Convolutional Neural Networks 

(CNNs) and transfer learning, for automated dermatological diagnosis. Public datasets 

such as HAM10000 and ISIC play a key role in training robust models; however, 

challenges including dataset imbalance, disease heterogeneity, and overfitting remain. 

Techniques such as ensemble learning, attention mechanisms, explainable artificial 

intelligence, data augmentation, hybrid models, and task-specific loss functions have been 

shown to enhance accuracy, robustness, and interpretability. This study follows a 

systematic review methodology in accordance with the PRISMA guidelines. The review 

synthesizes 17 studies published between 2021 and 2024, highlighting the potential of 

deep learning to support scalable and reliable dermatological diagnostic systems. 

Keywords: Deep Learning; Convolutional Neural Networks (CNN); Transfer Learning; 

Image Processing; Skin Lesions; Image Classification. 

 

1. Introduction 

Skin cancer is one of the most prevalent cancers globally, imposing a significant clinical burden on healthcare   

systems and presenting serious quality-of-life challenges for patients. Skin diseases encompass a wide range of issues, 

from benign dermatological disorders to rare and complex conditions. These conditions present significant challenges 

to the field of dermatology due to their intricate appearances and potential health impacts. Early and accurate       

identification of skin diseases is critical for timely treatment, and recent AI-driven tools have both accelerated and   

sharpened this process in clinical settings. Traditional diagnostic methods often rely on the dermatologist's judgment, 

which can be constrained by factors such as availability, accessibility, and the subjective nature of visual examinations, 

making them prone to errors. Recent advancements in artificial intelligence and deep learning have opened new    

pathways to automate the detection and classification of skin diseases [1]. 

Convolutional Neural Networks (CNNs), along with other deep learning methods, have become an effective    

instrument in medical diagnostics. They help to automate and improve the diagnostic process, which results in better 

patient outcomes and reduces the workload of medical specialist [2]. The Convolutional Neural Networks are able to 

learn complex features of images with consideration of large annotated data sets and induce significant improvement 

on di-agnostic accuracy with minimum human intervention [3]. Other than that, deep learning architecture selection is 

the key to the success of skin disease detection systems. Different architectures have been studied and combination of 
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deep learning and transfer learning methods has also increased the efficiency of these systems. This method is especially 

applicable to medical imaging, where information can be scarce, and it might need re-labeling. By exploiting the      

acquired features of large datasets, including ImageNet, before refining them on task-specific tasks, e.g. skin diseases 

classification, such models can greatly decrease training time and increase accuracy by exploiting the acquired features 

of large datasets [4]. In addition, Ensemble learning techniques involving the use of more than one model have been 

demonstrated to improve the classification accuracy by alleviating the weaknesses of single models [5]. 

In addition to the importance of the deep learning model, it is also important to select the dataset. The ability of 

such models to process skin disease datasets enables creation of strong classifiers to perform well in the generalization 

of different populations and skin types [6,7]. This diversity of diseases manifestations and types of skin exhibited in this 

database gives a strong basis on which models can be successful in detecting and differentiating different classes of skin 

disorders [8]. 

Although the progress of deep learning in skin diseases diagnosis is promising, there are still a number of      

problems. The issues of overfitting, large labeled datasets and interpretability of model predictions remain major    

challenges [9]. In addition, problems like skew of the dataset where some skin diseases are underrepresented may lead 

to biased predictions in the models [10]. Moreover, the application of these models to the clinical practice also requires 

a close attention to the ethical considerations, data privacy, and the inclusion of AI systems into the current patterns of 

work of the healthcare practices [11]. These difficult situations are important aspects that need to be addressed in order 

to ensure a successful implementation of the deep learning technology in dermatology. There is a need to make sure 

that these technologies will aid and support, but not substitute the choices made by the healthcare professionals [12].  

This review synthesizes recent deep learning methods, CNNs, transfer learning, ensembles, XAI applied to skin 

disease image datasets. Section 2 presents cover background. The Methodology is presented in Section 3. The results of 

the review analysis, including the most significant literature, are presented in Section 4. Challenges and Future Work 

can be found in Section 5. Finally, Section 6 provides a conclusion of the research findings. 

2. Background and Theoretical Framework 

2.1 Skin Diseases and Their Impact  

The fact that skin diseases are visible and prevalent makes them quite challenging to diagnose and thus demand 

accurate and specialized diagnostic tools [13]. The current developments in deep learning methods have demonstrated 

the potential to increase the precision of skin disease detection, upon which early treatment and intervention are based. 

Early diagnosis also translates into improved clinical outcomes of the disease and costs incurred in the healthcare    

management of advanced diseases are minimized [14]. Additionally, the knowledge of the psychosocial effects of skin 

diseases can enable healthcare professionals to create holistic care plans that would support both physical and           

psychological requirements [15]. 

2.2 Deep Learning in Medical Image Analysis 

A breakthrough in (AI) and especially deep learning (CNNs), deep residual networks and transformer           

architectures has facilitated the classification, diagnosis and segmentation of lesions on the skin with precision and 

without human intervention. Detection of skin diseases in dermatoscopic image scans and automated detection of    

histopathological images are just some of the applications that have shown higher diagnostic capabilities than the   

conventional methods [16]. Recent studies have focused on improving the model robustness and generalizability 

through learning multi-scale features, attention and with large annotated data sets [17,18]. 

Figure 1. CAD pipeline for skin diseases image analysis. 
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As shown in Figure 1. typical computer-aided diagnosis (CAD) pipeline of dermoscopic images, the raw input 

lesion image is the starting point of the pipeline. then is followed by pre-processing steps, which involve hair removal, 

marker removal and contrast enhancement. This is followed by segmentation that can be done manually by experts or 

automatically using (ML) or (DL) techniques. Features are extracted, either manually by using ML models or         

automatically by using DL models. These characteristics are eventually fed into classification model to generate a     

decision. 

2.3 Deep Learning Techniques for Skin Disease Detection and Classification 

The latest developments in deep learning methods have been very beneficial in the process of detection and    

classification of skin diseases. Different methodologies such as CNNs have been utilized to automate the classification 

process and they have proven to be highly accurate to identify different dermatological conditions. CNNs are enhanced 

versions of the Artificial Neural Networks (ANNs) which build on the principle of the ANNs by adding another layer 

of hidden features to the network. An example of this network structure which is deepening is CNNs, as depicted in 

Figure 2. The effectiveness of hybrid models is shown by such hybrid architectures as U-Net and DenseNets [19], which 

combine both spatial and contextual features. Moreover, the emphasized models, such as CNNs, employ the methods 

of transfer learning and ensembles to enhance the classification accuracy. Moreover, data augmentation and pre-trained 

models have also contributed to performance improvement to a considerable extent [20]. 

Additionally, research has highlighted the transfer learning and ensemble techniques to increase the performance 

of classification, especially in the context of multiclass [21]. Combining image processing methods with deep learning 

systems has also enhanced the accuracy of the diagnosis and provided more effective computer-aided diagnosis 

systems. These developments have shown promising clinical decision support outcomes in diagnostic errors reduction 

and   helping dermatologists detect skin cancer at its early stages [22]. 

 

Figure 2. Advanced Deep Learning Techniques for Skin Disease Classification. 

Figure 2. illustrates an abstracted DL pipeline to analyze skin diseases, in which a dermoscopic image is first used 

and a multiclass diagnosis is the final step. CNNs further improved ANNs with extra hidden layers learn fine diseases 

characteristics, and hybrid models such as U-Net and DenseNets combine space and context information. Transfer 

learning, ensemble approaches, data augmentation and image-processing pre-steps can also enhance performance so 

that they are correctly classified into seven and above disease categories. This technique is built into clinical decision 

support and helps to minimize diagnostic errors and detects skin cancer early. 

3.4 Skin Diseases Datasets 

2. 4. 1. Dermatoscopic Datasets 

Deep dermoscopy is an important non-surgical procedure to determine the high-resolution images of the 

subsurface skin architecture that greatly improves the early melanoma and other skin diseases detection. With the 

growing use of AI, ML, and DL in this domain, there is a growing need to have publicly available image datasets. 
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Such dermoscopic datasets can be used to train and fine-tune the AI, ML, and DL models to guarantee their precise 

functioning with a wide range of skin types and diseases variations [23]. The most popular public dermoscopic image 

datasets are summarized in Table. 1, which provides detailed information about each dermoscopic image datasets that 

are publicly available [24]. 

Table 1. Skin Disease Datasets Overview. 

Dataset Name Collection Site Year No. Disease Dataset Size 

ISIC Memorial Sloan Kettering Cancer Center 2020 5 11,108 

BCN20000 Hospital Clinic Barcelona 2019 9 19,424 

HAM10000 
Medical University of Vienna and skin cancer 

practice of Cliff Rosendahl in Queensland 
2018 8 10,015 

SNU University of Edinburgh 2018 134 2,201 

Asan Asan Institutional 2017 12 17,125 

PH2 Dermatology Service of Pedro Hispano Hospital 2013 3 200 

 

2. 4. 2. HAM-10000 Datasets 

The HAM10000 dataset is a very important resource in skin disease detection and classification. This dataset    

contains 10,015 dermatoscopic images that are divided into seven different types of skin diseases, as they are shown in 

Table. 2, and it shows how diseases are classified under the HAM10000 dataset. 

Table 2. Diversity of HAM-10000 Dataset. 

Diseases Name Category Code No. of Images Total Samples (%) 

Melanocytic nevi NV 6,705 66.95% 

Melanoma MEL 1,113 11.11% 

Benign keratosis-like lesions BKL 1,099 10.97% 

Basal cell carcinoma BCC 514 5.13% 

Actinic keratoses and intraepithelial carcinoma AKIEC 327 3.27% 

Vascular lesions VASC 142 1.42% 

Dermatofibroma DF 115 1.15% 

Total number of samples 10,015 100.00% 

 

The dataset has a 644 x 450-pixel image resolution. The dermatoscopic images are of JPEG format. Diversity of the 

dataset makes the algorithms more robust and they can be generalized to different skin conditions [25], Figure 3. below 

illustrates the diseases. 

 

Figure 3. HAM-10000 skin disease categories. 

2.5 Explainable AI and Skin Disease Classification 

Explainable AI (XAI) techniques offer interpretable outputs, which can be validated and trusted by physicians with 

AI-based conclusions [26,27]. Moreover, deep learning models tend to make decision-making processes more     

complicated and therefore become inefficient in high-stakes settings, including healthcare. Thus, to ensure the 

successful implementation of AI in clinical practice, it is necessary to increase the level of clarity. 
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In order to elaborate on the intensive study in fashion, a number of methods have been proposed. Explanatory 

clinical imaging artificial intelligence is inherently human-oriented and is informed by the requirements and concepts 

of medical staff members [28]. Through these interpretative measures, the clinical subject will be able to increase the 

credibility and reliability of the adoption of AI in the healthcare sector. 

3. Methodology 

3.1 Aim and Scope  

This study examines and discusses the most recent developments in deep learning methods that can be used to 

detect and classify skin diseases. It will determine the efficacy of different architectures and approaches such as CNN 

and transfer learning to overcome such issues as imbalance in the dataset and image diversity. The proposed research 

will provide the advantages, drawbacks, and prospects of AI-based clinical technology in dermatology, thus enabling 

more efficient, precise, and convenient clinical practice. 

The current review paper summarizes the state-of-the-art in the field of skin disease detection and classification 

with the use of deep learning, with special attention to the utilization of skin disease datasets, in particular, HAM10000. 

With the ability of artificial intelligence, such systems can provide quick, precise, and scalable remedies in the detection 

of skin conditions, which will eventually result in better patient care and patient outcomes. Deep learning deployment 

in the clinical practice is bound to revolutionize the sphere of dermatology, enabling to realize the early detection and 

intervention more readily than ever before. 

3.2 Search Strategy and Data Collection  

This was done using a strategic key word selection process in order to come up with relevant studies. The keywords 

were selected based on the main ideas of the research in particular, skin diseases, deep learning architectures, and    

classification tasks and turned into a list of seed terms and controlled vocabulary descriptors. As an example, terms 

such as “skin lesion,” “dermatoscopic image,” and “skin disease” were paired with methodological descriptors       

including “deep learning,” “convolutional neural network (CNN),” “transfer learning,” “vision transformer,” and  

“explainable AI (XAI)” synonyms and abbreviations were combined using OR operators, while distinct concepts were 

linked with AND operators (e.g., (“skin diseases” OR “dermatoscopic image”) AND (“deep learning” OR “CNN” OR 

“transfer learning”) AND (“classification” OR “detection”)). 

Based on this search strategy, the queries were executed across four major scientific database, IEEE Xplore, Scopus, 

ScienceDirect, and MDPI and filtered them to peer-reviewed articles, English-language, full-text articles published   

between 2021 and 2024. The first results were filtered by relevance and applied to further narrow down our list of 

keywords by adding new words as they were discovered like “attention mechanism” or “data augmentation” to      

increase precision without reducing recall. Lastly, inclusion and exclusion criteria were used to bring up the final corpus 

of studies that form the basis of this review. 

3.3 Review Design and PRISMA Compliance 

This study was conducted as a systematic literature review in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PRISMA framework was adopted to ensure    

methodological transparency, reduce selection bias, and provide a reproducible process for identifying, screening, and 

selecting relevant studies. Accordingly, the review followed four structured phases: identification, screening, eligibility 

assessment, and final inclusion, as illustrated in the PRISMA flow diagram Figure 4. 

A total of 94 records were identified through searches of IEEE Xplore, Scopus, ScienceDirect, and MDPI. After 

removing 13 duplicates, 81 unique articles remained and were assessed at the screening stage, with all proceeding to 

full-text eligibility evaluation. During eligibility assessment, 64 studies were excluded due to insufficient results,    

outdated or non-novel methods, irrelevance to AI-based skin disease classification, or misalignment with the review 

scope, while 12 articles were unavailable in full text. Consequently, 17 studies satisfied the inclusion criteria and were 

retained for qualitative synthesis. 
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Figure 4. Prisma diagram. 

Figure 5 summarizes the methodological distribution of the selected studies, revealing that transfer learning with 

pre-trained CNNs predominates (41.2%), followed by multi-scale and hybrid architectures and advanced preprocessing 

techniques (17.6% each). Explainable AI and hand-crafted feature-based approaches each represent 11.8%, indicating 

the dominance of deep learning while reflecting emerging interest in interpretability and traditional methods. 

 

Figure 5. Proportional Distribution of Methodological Clusters in Reviewed Studies. 

While Table 3. organizes the individual papers by their respective groups. Together, they highlight where research 

efforts have been most concentrated and pinpoint opportunities for further innovation. 

Table 3. Papers Organized by Methodological Group. 

No. Methodological Group Authors 

1 Multi-Scale & Hybrid Architectures [29], [30], [31] 

2 Transfer Learning with Pre-trained CNNs [32], [33], [34], [35], [36], [37], [38] 

3 Explainable AI & Vision Transformers [39], [40] 

4 Advanced Preprocessing & Denoising [41], [42], [43] 

5 Hand-crafted & Feature Engineering [44], [45] 

3.4 Study Selection Process and Eligibility Criteria (PRISMA-Guided) 

The initial database search yielded 94 records. After removing 13 duplicate articles, 81 unique studies remained 

for screening. During the screening phase, titles and abstracts were reviewed to assess their relevance to AI-based skin 

disease classification. All records that passed this stage were subsequently evaluated in the eligibility phase through 

full-text assessment. Study eligibility was determined based on predefined inclusion and exclusion criteria. 
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Inclusion Criteria: To guarantee that the most pertinent and high-quality studies were included in our review, the 

following criteria were used: 

• Target AI-Driven Classification: Studies need to be focused on machine learning or deep learning methods to detect 

or classify skin diseases. 

• Publication: The article should be published in peer-reviewed journals that are included in one of the following 

repositories: IEEE Xplore, Scopus, ScienceDirect or MDPI. 

• Publication Date: Only articles published in 2021-2024 were put into consideration. 

• Language and Accessibility: Full-text articles are offered in English. 

• Methodological Transparency: Research should be sufficiently detailed in methodology, that is, the model methods 

used and the image data used should be described in detail. 

Exclusion Criteria: The studies were not included in the review in case they had any of the following criteria: 

• The paper is not focused on the application of AI, such as ML or DL, to the identification of skin dis-eases. 

• It is a conference abstract, editorial, letter or opinion piece which lacks original research data. 

• Studies lacking sufficient experimental or methodological detail. 

• The research itself does not use any of the following publicly available dermoscopic datasets: ISIC, HAM10000, 

PH2, Dermnet. 

• Research focused exclusively on lesion segmentation without classification. 

Following this selection process, 64 articles were excluded, and 17 studies met all eligibility requirements and were 

included in the final qualitative synthesis. 

3.5 Quality Assessment of Included Studies 

To ensure the reliability and scientific rigor of the selected literature, a qualitative quality assessment was       

conducted for all 17 included studies. Each paper was evaluated based on the following criteria: 

• Dataset transparency: Clear description of dataset source, size, and class distribution. 

• Methodological clarity: Explicit reporting of model architecture, training strategy, and preprocessing steps. 

• Evaluation rigor: Use of appropriate performance metrics (e.g., accuracy, sensitivity) and validation protocols. 

• Reproducibility: Sufficient experimental detail to allow replication. 

• Clinical relevance: Discussion of applicability, limitations, and potential clinical impact. 

Only studies that met the majority of these criteria were retained. Papers with incomplete methodological 

descriptions or insufficient validation were excluded during the eligibility phase. 

4. Results 

4.1 Multi-Scale & Hybrid Architectures  

Hu et al. in 2024, proposed a multi-scale feature fusion network based on the skilled NETV2 architecture to address 

challenges in skin wound classification using the HAM10000 and ISIC2019 datasets. The model achieved an accuracy 

of 94.0%, and 89.8% accuracy on the HAM10000 and ISIC2019 dataset. Such techniques that can be credited to this 

performance include: restarting against class weighting, label smoothing and class imbalance. The model is effective 

because of the combination of shallow and deep features that target the wound area, and solutions to problems       

associated with datasets. Marking the wound area is an essential element of classifying dermoscopic images, though 

the hair features also play a certain role in the process of the classification [29]. 

Karthik et al. in 2024, proposed a hybrid deep learning architecture where Swin Transformer was used to extract 

global features and Dense Group Shuffle Non-Local Attention (DGSNLA) Network was used to extract local features. 

This model was tested on HAM10000 dataset, it gave a maximum accuracy of 94.21% with recall of 96.25% when both 

the networks were combined thus increasing the feature representation. Data augmentation methods and focal loss 

were used to overcome the issue of class imbalance, whereas the use of both local and global features allowed the model 

to handle both short-and-long-range dependencies successfully [30]. 
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In 2021 Srinivasu et al., suggested a classification model that was built using MobileNet V2 and Long Short-Term 

Memory (LSTM) was recommended to detect skin disease using dermatoscopic images of the HAM10000 dataset. The 

given model attained an accuracy of 85.34% with the use of the lightweight MobileNet V2 as a feature extractor and 

LSTM to process sequential information. It is a state-of-the-art method that integrates MobileNet V2 and the LSTM 

module to guarantee accurate classification of skin diseases. Also, the fine-tuning and data augmentation were utilized 

to enhance the efficiency of model training. [31]. 

Recent innovations in multi-scale and hybrid architectures demonstrate their capabilities in terms of feature fusion 

(e.g. NETV2-based frameworks), transformer-CNN hybrids of capturing global-local dependencies, as well as     

light-weight CNNs coupled with sequential modeling. Nevertheless, these studies have serious limitations: they lack 

sufficient ablation tests to separate architectural efforts with auxiliary methods, lack cross dataset testing (e.g. 

dermoscopic versus clinical images), and do not address the computational requirements of real-world implementation.    

Future studies must focus on adaptive fusion (e.g., attention-based weighting), energy efficient transformer-CNN    

hybrids and intensive benchmarking on a variety of datasets in order to improve clinical relevance. 

4.2 Transfer Learning with Pre-trained CNNs 

Singh et al. in 2023, tested a pre-trained VGG16 model for skin disease classification by analyzing a massive dataset 

of 44,000 images from Kaggle. VGG16 model with fine-tuning is an efficient extraction and classification model of    

images, classifying them as benign or malignant. The model attained a high accuracy 90.1% and recall of 94. 20%. when 

optimized using hyperparameters, such as the learning rate and epochs. My goal was to use the abilities of VGG16 to 

recognize and categorize different skin diseases using different images, which demonstrates my strict method. The 

model is also highly effective with regard to early diagnosis of skin diseases at the various stages [32]. 

In 2022 Anand et al., proposed a new transfer learning model to skin cancer diagnosis. The ResNet50 architecture 

was further improved by adding a flatten layer, two dense layers with Leaky ReLU activation and a final dense layer 

with sigmoid activation. In addition, randomness and augmentation of the dataset were implemented to determine the    

stability of the model with regard to data augmentation. The ResNet50 model trained on Adam optimizer and 128 batch 

size reached an accuracy of 90% with sensitivity of 74.42 and the training images were only augmented to enhance the 

training accuracy of the model, virtually doubling the number of training images [33]. 

In 2023 Bhargavi et al., presented a model on skin diseases classification using the HAM-10000 dataset, using     

InceptionResNetV2, InceptionV3, MobileNetV2, and EfficientNetB0. The authors applied data augmentation method to 

counter the impact of the class imbalance and used pre-trained models to ease the burden of extracting features of 

images. With the use of predictions and fine-tuning of the model layers, the proposed model was able to obtain a higher 

accuracy of 81.3% with recall of 80.1% which was higher than the performance of each of the individual models. This 

method helps in precise and accurate diagnosis of seven types of cancer with the use of wound images. [34].  

Rangaswamy et al. in 2024, comparative analysis of skin disease classification with the InceptionV3 and VGG16, 

CNN models were made on a dataset of 17,214 images of 13 distinct disease categories. InceptionV3 was the most    

accurate in terms of training with an accuracy of 80.88% compared to VGG16 which had an accuracy of 74.17%.     

Normalization, flipping and rotation have been used as pre-processing techniques that increase the variability of data. 

Preprocessing was also done to deal with the issue of class imbalance using shear range and zoom range, which also 

helped the models to make strong predictions of different diseases on the skin [35]. 

Jain et al. in 2021, presented six transfer learning models such as Xception, to classify seven types of cancer in the 

skin based on the HAM10000 dataset. They equalized the classes by replicating the images and applying transformation 

operations like rotation and zooming, the Xception model had an accuracy of 90.48% and a recall of 89.57% [36].  

In 2023 Inthiyaz et al., proposed an automated skin disease detector based on CNN was suggested on the Xiangya-

Derm dataset, the largest set of clinical skin images. The researchers pre-processed the pictures by resizing the pictures 

and used a Softmax classifier to classify the pictures into four classes of eczema, melanoma, psoriasis and healthy skin. 

The model had an accuracy of 87.42%. It was also optimized based on data augmentation and an optimized architecture. 

The features were also picked out by counting the features of all the images by downsizing the image to a single    

measure, which underlines how feature consistency is important in classification [37]. 

Zhi et al. in 2024, suggested a multiclassification model which is derived through Inception-v2 network and focal 

loss to analyze dermoscopy images. The model used data augmentation, hair removal and Grad-CAM heat maps to 

enhance image preprocessing and interpretation. The model was based on the dataset of ISIC 2019 and the accuracy of 
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this model was estimated to be 89.04% and recall of 90.15%. The findings indicate that focal loss can improve the     

performance of the model, especially in case the dataset is unevenly distributed [38]. 

The effectiveness of fine-tuning and class imbalance correction methods, including focal loss and data          

augmentation, are demonstrated with the help of the transfer learning methods involving the VGG16, Inception, and 

Xception architectures. One of the enduring weaknesses of these approaches is that they are based on curated        

dermoscopic datasets, and it limits their extrapolation to clinical contexts, where imaging conditions are heterogeneous. 

Moreover, simple approaches to augmentation do not necessarily use sophisticated data generation algorithms, e.g., 

GANs. The future studies must be based on the creation of domain adaptation models, multi-modal data (clinical and 

dermoscopic) and exploration of modern loss functions, including distribution-aware margins, to achieve greater     

robustness in a variety of imaging settings. 

4.3 Explainable AI & Vision Transformers 

Hosny et al. in 2024, a novel explainable deep inherent learning architecture proposed to classify multi-class skin 

diseases was suggested, with the use of a CNN having 54 layers. This was a method of combining both inherent learning 

and XAI methods to correctly recognize and categorize seven different types of skin diseases. Using the ISIC 2018    

database, the model displayed a remarkable accuracy of 92.89% and sensitivity of 58.57% on the basis of the          

improvements in the information flow of layers, better visualization of the features, and the sensitivity of the map to 

the occlusion. The learning approach inherent in the proposed model was able to predict several different types of 

disease and give visual understanding regarding explainability, and as such, it was less susceptible to error compared 

to traditional shallow networks [39]. 

In 2023 Arshed et al., The multi-class classification of skin cancer with a Vision Transformer (ViT) model was    

suggested, and it takes advantage of the feature of ViT to improve the attention drawn to the important parts of a picture 

by its self-attention mechanism. This model was contrasted to 11 CNN models that applied the fine-tuning and data 

augmentation strategies on the HAM10000 dataset to solve the issue of class imbalance. ViT-based model also set an 

accuracy of 92.14% and recall of 92.14%, which was optimized using a mixture of fine-tuning and training. The     

transformer self-attention mechanism improves the recognition of valuable features and reduces the effects of noise, 

which shows the strength of this methodology [40]. 

 ViTs and explainable convolutional neural networks are self-attention based and occlusion sensitivity        

mapping-based vision transformers that provide state-of-the-art accuracy. Nonetheless, the models face the following 

issues regarding computational efficiency: ViTs demand large amounts of data, and deep CNNs are complex. Also, 

their explainability, especially in the clinician aligned measures, has not been quantitatively confirmed. Future research 

directions involve creating hybrid ViT-CNN models to be more efficient, pretraining on large-scale medical images, and 

creating standardized assessment methods of XAI to make technical explainability more consistent with clinical trust. 

4.4 Advanced Preprocessing & Denoising 

Kavitha et al. in 2024, proposed CNN-based skin cancer detection system utilizes the ISIC dataset. The authors 

performed image preprocessing by removing hair and noise to enhance image quality, followed by the application of 

and ResNet50 models for classification. This method achieved a performance of 91.32% accuracy and recall of 78.15%, 

employed techniques has an enhancement, of deep learning architecture, and augmentation. This was achieved success 

of this approach   implementing attributed to the implementation of training it on multiple across the convolutional 

outcome classified nine different successfully of skin cancer [41]. 

Gururaj et al. in 2023, discussed skin cancer classification using a deep learning model with the HAM10000 dataset. 

The researchers applied data preprocessing techniques, including the Dull Razor method for noise removal and      

segmentation using encoder-decoder models. They utilized DenseNet169 and ResNet50 architectures for training, 

achieving an accuracy of 91.2% and recall of 69.6% through under-sampling using DenseNet169 model and optimized 

training over multiple epochs for both techniques [42]. 

In 2024 Pandey et al., a method for skin cancer detection was proposed that combines non-local means (NLM) 

denoising, sparse dictionary learning, and CNNs. The HAM10000 and ISIC2019 datasets were preprocessed using NLM 

to enhance image quality. After applying data augmentation and sparse dictionary learning, the trained CNN model 

achieved accuracies of 85.61% for the HAM10000 dataset and 81.23% for the ISIC2019 dataset. Denoising significantly 
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improved image quality and model performance, particularly by reducing residual noise, which facilitated clearer    

pattern recognition [43]. 

The importance of removing noise and eliminating artifacts as part of improving classification performance is  

emphasized in studies that focus on preprocessing methods, including hair removal and non-local denoising.       

Nevertheless, preprocessing pipelines are often biased with regard to datasets, e.g. inefficient hair removal in different 

skin types, and they are usually not based to measure the isolated effect of these processes on model improvements. 

Future re-search ought to be directed at incorporating adaptive denoising techniques, e.g. learnable filters, into end-to-

end frame-works, and making sure that diagnostically important features are not lost in the preprocessing. Also, the 

cross-domain reliability will be necessary through benchmarking with self-supervised denoising techniques. 

4.5 Hand-crafted & Feature Engineering 

Kumar et al. in 2024, suggested to identify multiclass skin diseases, based on new hand-crafted features of spatial, 

spectrogram and cepstrum-domain features. The model has been tested on the HAM10000 and DermNet datasets and 

yielded 89.71% and 88.57% accuracies respectively with 89.24% and 88.28% recall respectively. These outcomes were 

achieved by optimizing features, data augmentation and hyperparameter tuning. The concatenated features utilize both 

spatial and spectral information, which allows deriving more detailed information out of difficult sets of data, which 

further supports the usefulness of the method [44]. 

A et al. in 2024, A gradual end-to-end model of skin diseases classification was suggested based on the S-MobileNet 

CNN model and the HAM10000 dataset. Gaussian filtering was used to perform segmentation of the data and modified 

SFTA was used to extract features. The S-MobileNet is a lightweight architecture that uses activation functions and 

compression of the intermediate layer to optimize the performance of the architecture with an accuracy of 89.71% and 

recall of 89.24%. S-MobileNet CNN architecture was optimized to produce low-latency results. The findings were   

confirmed by 80:20 training and testing split [45]. 

 Hybrid models that blend hand-designed spatial-spectral inputs with lightweight CNNs are competitive in their 

accuracy because they use domain-specific feature engineering. Yet, these methods tend to be ineffective in keeping up 

with the changing pattern of diseases and have not been yet verified in a wide variety of individuals, including different 

skin tones and atypical subtypes. Future research should integrate hand-crafted features with self-supervised 

pretraining, employ Neural Architecture Search (NAS) for automated feature optimization, and prioritize the use of 

inclusive datasets to ensure equitable diagnostic performance across different populations. 

Table 4. Summary of Recent Studies in the Field of Skin Diseases. 

Authors, 

Year 
Model Technique Dataset 

Dataset 

Size 

Acc 

 (%) 

Sens  

(%) 
Description 

[29]  

Hu et al., 

2024 

Multi-scale NETV2 

Class 

weighting, 

label 

smoothing, 

resampling 

HAM10000 

ISIC-2019 

10,015 

33,569 

94.0 

89.8 

91.7 

N/A 

Multi-scale feature 

fusion network 

integrating shallow 

and deep features. 

Focused on lesion 

regions and handled 

hair interference. 

[30]  

Karthik et 

al., 2024 

Swin Transformer, 

DGSNLA 

Data 

augmentation, 

focal loss 

function, 

feature fusion 

HAM10000 10,015 94.21 96.25 

Combined global and 

local feature extraction 

using hybrid Swin 

Transformer and 

DGSNLA networks. 

[31]  

Srinivasu et 

al., 2021 

MobileNet V2, 

LSTM 

Data 

augmentation, 

lightweight 

architecture 

HAM10000 10,015  85.34 N/A 

Combined MobileNet 

V2 for feature 

extraction and LSTM 

for sequence handling 

in dermatoscopic. 
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[32]  

Singh et al., 

2023 

VGG16 

Transfer 

learning, fine-

tuning, 

hyperparameter 

optimization. 

Open-

repository 

dataset 

44,000  90.1 94. 20 

Leveraged VGG16 to 

classify images as 

benign or malignant. 

Focused on learning 

rate and epochs for 

optimization. 

[33]  

Anand et al., 

2022 

ResNet50 

Data 

augmentation, 

LeakyReLU 

activation, 

Adam 

optimizer 

HAM10000 10,015  90  74.42  

Modified ResNet50 

architecture with 

additional layers and 

data augmentation to 

improve performance. 

[34]  

Bhargavi et 

al., 2023 

InceptionResNetV2, 

InceptionV3, 

MobileNetV2, 

EfficientNetB0 

Data 

augmentation, 

ensemble 

learning 

HAM10000 10,015  81.3  80.1 

Utilized pre-trained 

models for feature 

extraction and 

combined predictions 

for improved accuracy. 

[35] 

Rangaswamy 

et al., 2024 

InceptionV3, 

VGG16 

Normalization, 

flips, rotations 

Roboflow + 

Kaggle 

"Skin 

Melanomas" 

17,214  80.88 N/A 

A comparative study 

of different image 

processing treatments 

on the nature of the 

convolutional neural 

networks for the study 

so that new 

approaches for a 

robust prediction. 

[36]  

Jain et al., 

2021 

Xception 

Transfer 

learning, data 

augmentation 

HAM10000 10,015  90.48  
89.57  

(recall)  

Denoising and sparse 

dictionary learning 

were combined to 

improve image quality 

and categorization. 

[37] 

Inthiyaz et 

al., 2023 

CNN with Softmax 

Image resizing, 

Softmax 

classifier, data 

augmentation 

Xiangya-

Derm 
150,223  87.42  N/A 

Pre-processed clinical 

dataset for consistency 

and optimized CNN 

architecture. 

[38] 

Zhi et al., 

2024 

Inception-v2 

Focal loss, 

Grad-CAM, 

hair removal 

ISIC 2019 25,332  89.04  
90.15  

(recall)  

To enhance model 

functioning and 

interpretability, focal 

loss and Grad-CAM 

heat maps were used 

for imbalanced 

datasets. 

[39] 

Hosny et al., 

2024 

54-layer CNN 

Inherent 

learning, XAI 

techniques, 

occlusion 

sensitivity 

mapping 

ISIC 2018 15,414 92.89 58.57 

Novel CNN approach 

with layer-by-layer 

improvements and 

explainability for 

seven skin diseases 

types. 
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[40] 

Arshed et al., 

2023 

Vision Transformer 

Fine-tuning, 

data 

augmentation 

HAM10000 10,015  92.14 
92.14  

(recall) 

To resolve class 

imbalance and 

enhance 

categorization, ViT 

was used in 

conjunction with self-

attention and fine-

tuning strategies. 

[41] 

Kavitha et 

al., 2024 

CNN-based 

Hair removal, 

noise removal, 

data 

augmentation 

ISIC  2,357 91.32 78.15 

Preprocessing and 

CNN-based 

architecture optimized 

for feature extraction 

and diverse 

classification tasks. 

[42] 

Gururaj et 

al., 2023 

DenseNet169,  

under sampling 

Dull Razor 

method, 

encoder-

decoder 

models, under-

sampling 

HAM10000 10,015 91.2 69.6 

Images to remove 

noise and trained 

models with 

optimized techniques 

over multiple epochs. 

[43] 

Pandey et al., 

2024 

Sparse dictionary 

based CNN 

Sparse 

dictionary 

learning, data 

augmentation 

HAM10000 

ISIC2019 

10,015 

25,332 

85.61 

81.23 
N/A 

Combined denoising 

with sparse dictionary 

learning to enhance 

classification and 

image quality. 

[44]  

Kumar et al., 

2024 

1-D Multiheaded 

CNN 

Spatial, 

spectrogram, 

and cepstrum-

domain feature 

integration 

HAM10000 

Dermnet 

10,015 

+25,000 

89.71 

88.57 

89.24 

88.28 

Novel methodology 

combining spatial and 

spectral features with 

augmented data and 

hyperparameter 

tuning. 

 

[45] 

A et al., 2024 

S-MobileNet, 

Gaussian filtering 

Mish 

activation, 

SFTA feature 

extraction, layer 

compression 

HAM10000 10,015 89.71 89.24 

Developed S-

MobileNet with 

lightweight 

architecture and 

Gaussian filtering for 

segmentation. 

 

Figure 6. Forest Plot of accuracy across different studies. 



Dasinya Journal for Engineering and Informatics. 2026, 2, 6. 13 of 18 
 

 

Figure 6. synthesizes the estimates of accuracy of seventeen recent studies on the topic of skin diseases classification 

and shows that there is not only methodological diversity but also variance in performance. The most efficient is      

reported in [29], with its multi-scale EfficientNetV2 achieving an accuracy of 94.0, and the least one is reported in [35] 

with 80.9% accuracy. These disparities are an indication of differences in preprocessing methods, feature-fusion      

approaches, and dataset composition. It is important to note that transformer-based systems such as Swin Transformer 

+ DGSNLA ([30]; 84.7%) and Vision Transformer ([40]; 92.1]) achieve mid and high-performance, indicating that      

attention mechanisms can be useful in solving complex and multi-class problems. Existing CNN backbones, like VGG16 

([32]; 90.1%), Incep-tionResNetV2 ensembles ([34]; 81.3%), and lightweight networks (e.g., MobileNet; [45]; 89.7%]) fall 

between 80 and 90 percent, whereas lightweight networks (e.g., MobileNet; [45]; 89.7%]) are promising to use in       

resource-constrained deployment. Performance differences also indicate dataset scale, of which big clinical repositories 

([37]; 150k images; 87.4%) are compared to moderate open-access sets (Ham10000, ~10k images). In general, the plot 

motivates that incorporating innovative preprocessing methods (hair removal and denoising), attention or hybrid    

networks, and balanced augmentation strategies are associated with increased accuracy, which will inform future   

studies to integrate these aspects to achieve effective dermatoscopic analysis. 

5. Challenges and Future Research Directions 

5.1 Challenges 

• Class Imbalance and Diagnostic Risk : Publicly available dermoscopic datasets such as HAM10000 and ISIC are 

inherently imbalanced, with benign diseases (e.g., melanocytic nevi) dominating the sample distribution while 

clinically critical malignancies remain underrepresented. As illustrated in Figure 7, class imbalance is the most 

frequently reported challenge in the reviewed literature. In real-world clinical deployment, this imbalance may 

result in biased classifiers that under-detect rare but aggressive skin cancers, potentially leading to delayed 

diagnosis and adverse patient outcomes. Although techniques such as data augmentation, focal loss, and 

resampling partially mitigate this issue in research settings, their effectiveness in routine clinical environments 

remains limited without true population-level diversity. 

 

Figure 7. Frequency of challenges discussed in literature. 

• Data Privacy, Security, and Regulatory Constraints: The centralized collection and sharing of medical images    

introduce significant privacy, ethical, and regulatory challenges that directly affect clinical adoption. Strict data 

protection regulations restrict multi-institutional data pooling, thereby limiting dataset diversity and hindering 

model generalization. From a clinical perspective, failure to address data governance, consent, and security    

concerns can prevent regulatory approval and restrict the deployment of AI-assisted diagnostic systems in hospital 

environments. 
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• Model Overfitting and Generalizability: Many high-performing deep learning models demonstrate excellent    

accuracy on curated dermoscopic datasets but experience substantial performance degradation when applied to 

real-world clinical images acquired using different devices, lighting conditions, and acquisition protocols. This 

performance gap between experimental and real-world settings is depicted in Figure 8, which contrasts model 

accuracy in research environments versus clinical scenarios. Such lack of robustness poses a major barrier to clinical 

translation, as unreliable predictions in routine practice could undermine diagnostic confidence and patient safety.  

 

Figure 8. Model Accuracy vs Clinical Settings. 

• Interpretability and Clinical Trust: Despite recent advances in explainable AI (XAI), most deep learning models 

remain black-box systems from a clinician’s perspective. While visualization techniques such as Grad-CAM and 

occlusion sensitivity maps offer some interpretability, they are rarely validated against dermatologist reasoning or 

clinical decision-making processes. In high-stakes medical environments, the absence of clinically meaningful   

explanations reduces physician trust and limits the acceptance of AI-based decision support tools. 

 

• Limited Dataset Diversity and Health Equity Concerns: The majority of reviewed studies rely on a narrow set of 

publicly available datasets, primarily HAM10000 and ISIC, as shown in Figure 9, which compares the frequency 

of dataset usage across the literature. These datasets insufficiently represent darker skin tones, pediatric        

populations, and rare dermatological conditions. As a result, models trained on such data may exhibit biased   

performance, potentially exacerbating healthcare disparities when deployed in clinical practice. 

 

Figure 9. Publicly dataset available. 

• Integration into Clinical Workflows: Even when technically accurate, many AI models fail to account for practical 

deployment constraints such as interoperability with hospital systems, workflow compatibility, and usability for 

clinicians. Without seamless integration into existing standards (e.g., DICOM, HL7-FHIR) and minimal disruption 

to clinical routines, deep learning models are unlikely to be adopted in real-world dermatology practice. 

5.2 Future Research Directions 
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To enable effective clinical translation, future research should prioritize the development of class-balanced learning 

strategies using generative models such as GANs and diffusion models, combined with domain-adaptive loss functions. 

Privacy-preserving learning paradigms, including federated and split learning, should be adopted to facilitate    

multi-center collaboration without compromising patient confidentiality. Enhancing model generalizability through 

self-supervised pretraining, cross-domain validation, and lightweight CNN–Transformer hybrid architectures will be 

critical for real-world reliability. 

Furthermore, standardized and clinically validated explainability frameworks must be developed to align AI    

decision-making with dermatologist interpretation. Expanding dataset diversity through multi-ethnic, multi-

institutional image repositories will be essential to ensure fair and unbiased diagnostic performance. Finally, early 

collaboration with clinicians, regulatory bodies, and healthcare institutions is necessary to address usability, 

interoperability, and compliance requirements, thereby accelerating the safe deployment of deep learning-based skin 

disease diagnostic  systems. 

In general, Table 5 underlines the key issues related to deep-learning-based skin-disease detection, and         

classification, as well as the further research directions that should be implemented to resolve these problems. Such 

challenges as class imbalance, privacy protection, robustness of models, interpretability, and clinical integration are still 

fundamental barriers to the translation of these systems out of research environments into clinical practice. 

Table 5. Challenges and Corresponding Future Directions. 

Challenge Future Directions References 

Class Imbalance and  

Diagnostic Risk 

Generative models, domain adaptation, class-balanced 

loss functions. 
 [29]; [30]; [38]; [40]. 

Data Privacy, Security, and 

Regulatory Constraints 

Federated/split learning, differential privacy, secure 

multi-party computation. 
[30]; [43]. 

Model Overfitting and  

Generalizability 

Lightweight CNN-Transformer hybrids, self-supervised 

pretraining, cross-domain validation. 
 [32]; [34]; [36]; [35]. 

Interpretability and  

Clinical Trust 

Diagnostic-concordance metrics, attention gating, 

prototype learning. 
 [38]; [39]. 

Limited Dataset Diversity  

and Health Equity Concerns 

Multi-ethnic datasets, rare pathology inclusion, style-

transfer augmentation. 
[37]; [43]; [44]. 

Integration into Clinical 

Workflows 

Usability trials, interoperability, regulatory 

engagement. 
 [31]; [33]; [45]. 

 

6. Conclusion 

This review article summarizes the major progress in the deep learning-based approaches to automation of the 

skin disease detection and classification. It emphasizes significant advances that have been made by using CNNs,    

hybrid models, transfer learning, and ensemble learning algorithms, which have resulted in high accuracy on large 

datasets including HAM10000, ISIC and PH2. Other challenges that are discussed in the article are class imbalance, data 

scarcity, and overfitting. Moreover, explainable AI methods, such as Grad-CAM and LIME, have enhanced the 

interpretability of models, which is essential to make the method applicable in reality. Nevertheless, there are a few 

challenges that have remained such as the demand of lightweight, streamlined architectures that can be deployed in 

real-time, high noise tolerance, and high generalizability in varied datasets. The further studies should focus on the 

need to develop effective, privacy-saving models and assure credible per-performance in any clinical environment. The 

issues about the diversity of datasets, model strength, and data security will be critical to the successful implementation 

of AI-based diagnostic instruments into practice. The combination of deep learning and dermatology is a new frontier 

in enhancing the early diagnosis, treatment outcome, and patient recovery and it can transform the dermatological care 

across the globe. 

Funding: This research did not receive any specific funding from public, commercial, or non-profit organizations. 



Dasinya Journal for Engineering and Informatics. 2026, 2, 6. 16 of 18 
 

 

Data Availability Statement: HAM10000 is an open-access resource hosted on Harvard dataset [46] 

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T ). 

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this paper. 

Ethical Approval: This study did not involve any experiments on humans or animals and did not require ethical      approval. All 

data used in this research were obtained from publicly available international datasets and used in      accordance with the terms 

and conditions stated by the dataset providers. 

References 

1.  Mushtaq, S.; Singh, O. A Deep Learning Based Architecture for Multi-Class Skin Cancer Classification. Multimed. Tools Appl. 

2024, doi:10.1007/s11042-024-19817-1. 

2.  Naeem, A.; Anees, T.; Fiza, M.; Naqvi, R.A.; Lee, S.W. SCDNet: A Deep Learning-Based Framework for the Multiclassification 

of Skin Cancer Using Dermoscopy Images. Sensors 2022, 22, doi:10.3390/s22155652. 

3.  Almutairi, A.; Khan, R.U. Image-Based Classical Features and Machine Learning Analysis of Skin Cancer Instances. Appl. Sci. 

2023, 13, doi:10.3390/app13137712. 

4.  Remya, S.; Anjali, T.; Sugumaran, V. A Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis. IEEE 

Access 2024, 12, 50738–50754, doi:10.1109/ACCESS.2024.3385340. 

5.  Pennisi, A.; Bloisi, D.D.; Suriani, V.; Nardi, D.; Facchiano, A.; Giampetruzzi, A.R. Skin Lesion Area Segmentation Using 

Attention Squeeze U-Net for Embedded Devices. J. Digit. Imaging 2022, 35, 1217–1230, doi:10.1007/s10278-022-00634-7. 

6.  Balasundaram, A.; Shaik, A.; Alroy, B.R.; Singh, A.; Shivaprakash, S.J. Genetic Algorithm Optimized Stacking Approach to 

Skin Disease Detection. IEEE Access 2024, 12, 88950–88962, doi:10.1109/ACCESS.2024.3412791. 

7.  Al-Saedi, D.K.A.; Savaş, S. Skin Lesion Classification by Weighted Ensemble Deep Learning. Iran J. Comput. Sci. 2024, 7, 785–

800, doi:10.1007/s42044-024-00210-y. 

8.  Ji, Z.; Wang, X.; Liu, C.; Wang, Z.; Yuan, N.; Ganchev, I. EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing 

Enhanced Feature Fusion and Attention Mechanisms. IEEE Access 2024, 143029–143041, doi:10.1109/ACCESS.2024.3468612. 

9.  Darapaneni, N.; Sahni, B.; Paduri, A.R.; Jain, S.; Mohamed, S.; Banerjee, A.; Chakrabarti, S. Early Detection of Skin Cancer - 

Solution for Identifying and Defining Skin Cancers Using AI. In Proceedings of the 2022 Interdisciplinary Research in 

Technology and Management (IRTM); 2022; pp. 1–6. 

10.  Alam, T.M.; Shaukat, K.; Khan, W.A.; Hameed, I.A.; Almuqren, L.A.; Raza, M.A.; Aslam, M.; Luo, S. An Efficient Deep 

Learning-Based Skin Cancer Classifier for an Imbalanced Dataset. Diagnostics 2022, 12, doi:10.3390/diagnostics12092115. 

11.  Mittal, R.; Jeribi, F.; Martin, R.J.; Malik, V.; Menachery, S.J.; Singh, J. DermCDSM: Clinical Decision Support Model for 

Dermatosis Using Systematic Approaches of Machine Learning and Deep Learning. IEEE Access 2024, 12, 47319–47337, 

doi:10.1109/ACCESS.2024.3373539. 

12.  Noronha, S.S.; Mehta, M.A.; Garg, D.; Kotecha, K.; Abraham, A. Deep Learning-Based Dermatological Condition Detection: 

A Systematic Review With Recent Methods, Datasets, Challenges, and Future Directions. IEEE Access 2023, 11, 140348–140381, 

doi:10.1109/ACCESS.2023.3339635. 

13.  Stratigos, A.J.; Richard, M.A.; Dessinioti, C.; Paul, C.; Nijsten, T.; Gisondi, P.; Salavastru, C.; Taieb, C.; Trakatelli, M.; Puig, L.; 

et al. The Prevalence of Skin Diseases in Greece, Impact on Quality of Life and Stigmatization: A Population-Based Survey 

Study. JEADV Clin. Pract. 2024, 3, 591–599, doi:10.1002/jvc2.287. 

14.  Hammad, M.; Pławiak, P.; Elaffendi, M.; El-latif, A.A.A.; Latif, A.A.A. Psoriasis Skin Detection. Sensors 2023, 23, 7295, 

doi:doi.org/ 10.3390/s23167295. 

15.  Jiang, Z.; Gu, X.; Chen, D.; Zhang, M.; Xu, C. Deep Learning-Assisted Multispectral Imaging for Early Screening of Skin 

Diseases. Photodiagnosis Photodyn. Ther. 2024, 48, 104292, doi:10.1016/j.pdpdt.2024.104292. 

16.  Ayaz, A.; Boonstoppel, R.; Lorenz, C.; Weese, J.; Pluim, J.; Breeuwer, M. Effective Deep-Learning Brain MRI Super Resolution 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T


Dasinya Journal for Engineering and Informatics. 2026, 2, 6. 17 of 18 
 

 

Using Simulated Training Data. Comput. Biol. Med. 2024, 183, 109301, doi:10.1016/j.compbiomed.2024.109301. 

17.  Rebar, Z.; Mohsin Abdulazeez, A. Deep and Machine Learning Algorithms for Diagnosing Brain Cancer and Tumors. Indones. 

J. Comput. Sci. 2024, 13, doi:10.33022/ijcs.v13i3.4028. 

18.  Farhan, N.M.; Setiaji, B. Indonesian Journal of Computer Science. Indones. J. Comput. Sci. 2023, 12, 284–301, 

doi:10.33022/ijcs.v13i3.4028. 

19.  Mounica, M.K.V.S. GAN Based Multi-Class Skin Disease Classification: Deep Learning Approach. Int. J. Res. Appl. Sci. Eng. 

Technol. 2024, 12, 137–142, doi:10.22214/ijraset.2024.61366. 

20.  Paramanandam, K.; Kanagavalli, R. A Review on Deep Learning Techniques for Saliency Detection. Lect. Notes Networks Syst. 

2023, 400, 279–289, doi:10.1007/978-981-19-0095-2_29. 

21.  Tetengi, A.; Abdullahi, M.; Florentin, A.; Kana, D.; Tukur, M.; Hayatu, I. Categorical Classi Fi Cation of Skin Cancer Using a 

Weighted Ensemble of Transfer Learning with Test Time Augmentation. Data Sci. Manag. 2024, 8, 174–184, 

doi:10.1016/j.dsm.2024.10.002. 

22.  Ibrahim, S.; Amin, K.; Alkanhel, R.I.; Abdallah, H.A.; Ibrahim, M. Soft Attention Based Efficientnetv2b3 Model for Skin 

Cancer’s Disease Classification Using Dermoscopy Images. IEEE Access 2024, 12, 161283–161295, 

doi:10.1109/ACCESS.2024.3486153. 

23.  Grignaffini, F.; Barbuto, F.; Piazzo, L.; Troiano, M.; Simeoni, P.; Mangini, F.; Pellacani, G.; Cantisani, C.; Frezza, F. Machine 

Learning Approaches for Skin Cancer Classification from Dermoscopic Images: A Systematic Review. Algorithms 2022, 15, 1–

30, doi:10.3390/a15110438. 

24.  Debelee, T.G. Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review. 

Diagnostics 2023, 13, doi:10.3390/diagnostics13193147. 

25.  Nirupama; Virupakshappa MobileNet-V2: An Enhanced Skin Disease Classification by Attention and Multi-Scale Features. 

J. Imaging Informatics Med. 2024, 38, 1734–1754, doi:10.1007/s10278-024-01271-y. 

26.  Abdulqader, Z.R.; Abdulqader, D.M.; Ahmed, O.M.; Ismael, H.R.; Ahmed, S.H.; Haji, L. Responsible AI Development for 

Sustainable Enterprises: A Review of Integrating Ethical AI with IoT and Enterprise Systems. J. Inf. Technol. Informatics 2024, 

3, 129–156. 

27.  Rasel, M.A.; Abdul Kareem, S.; Kwan, Z.; Yong, S.S.; Obaidellah, U. Bluish Veil Detection and Lesion Classification Using 

Custom Deep Learnable Layers with Explainable Artificial Intelligence (XAI). Comput. Biol. Med. 2024, 178, 108758, 

doi:https://doi.org/10.1016/j.compbiomed.2024.108758. 

28.  Tulsani, V.; Sahatiya, P.; Parmar, J.; Parmar, J. XAI Applications in Medical Imaging: A Survey of Methods and Challenges. 

Int. J. Recent Innov. Trends Comput. Commun. 2023, 11, 181–186, doi:10.17762/ijritcc.v11i9.8332. 

29.  Hu, Z.; Mei, W.; Chen, H.; Hou, W. Multi-Scale Feature Fusion and Class Weight Loss for Skin Lesion Classification. Comput. 

Biol. Med. 2024, 176, 108594, doi:10.1016/j.compbiomed.2024.108594. 

30.  Karthik, R.; Menaka, R.; Atre, S.; Cho, J.; Easwaramoorthy, S.V. A Hybrid Deep Learning Approach for Skin Cancer 

Classification Using Swin Transformer and Dense Group Shuffle Non-Local Attention Network. IEEE Access 2024, 12, 

158040–158051, doi:10.1109/ACCESS.2024.3485507. 

31.  Srinivasu, P.N.; Sivasai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Networks with MobileNet V2 and LSTM. 2021, 21, 

2852, doi:10.3390/s23167295. 

32.  Singh, G.; Guleria, K.; Sharma, S. A Transfer Learning-Based Pre-Trained VGG16 Model for Skin Disease Classification. 2023 

IEEE 3rd Mysore Sub Sect. Int. Conf. MysuruCon 2023 2023, 1–6, doi:10.1109/MysuruCon59703.2023.10396942. 

33.  Anand, V.; Gupta, S.; Nayak, S.R.; Koundal, D.; Prakash, D.; Verma, K.D. An Automated Deep Learning Models for 

Classification of Skin Disease Using Dermoscopy Images: A Comprehensive Study. Multimed. Tools Appl. 2022, 81, 37379–

37401, doi:10.1007/s11042-021-11628-y. 

34.  Bhargavi, M.; Renugadevi, R.; Sivabalan, S.; Phani, P.; Ganesh, J.; Bhanu, K. Ensemble Learning for Skin Lesion Classification: 

A Robust Approach for Improved Diagnostic Accuracy (ELSLC). 3rd Int. Conf. Innov. Mech. Ind. Appl. ICIMIA 2023 - Proc. 



Dasinya Journal for Engineering and Informatics. 2026, 2, 6. 18 of 18 
 

 

2023, 390–395, doi:10.1109/ICIMIA60377.2023.10425888. 

35.  Rangaswamy, S.; Tantry, S.S.; Lal, T.S. Skin Disease Classification Using Deep Learning. 2024, doi:10.1007/s40009-024-01523-

z. 

36.  Jain, S.; Singhania, U.; Tripathy, B.; Nasr, E.A.; Aboudaif, M.K. Deep Learning-Based Transfer Learning for Classification of 

Skin Cancer. Sensors 2021, 21, 16, doi:https://doi.org/10.3390/s21238142. 

37.  Inthiyaz, S.; Altahan, B.R.; Ahammad, S.H.; Rajesh, V.; Kalangi, R.R.; Smirani, L.K.; Hossain, M.A.; Rashed, A.N.Z. Skin 

Disease Detection Using Deep Learning. Adv. Eng. Softw. 2023, 175, 103361, doi:10.1016/j.advengsoft.2022.103361. 

38.  Zhi, S.; Li, Z.; Yang, X.; Sun, K.; Wang, J. A Multiclassification Model for Skin Diseases Using Dermatoscopy Images with 

Inception-V2. Appl. Sci. 2024, 14, 10197, doi:https://doi.org/10.3390/app142210197. 

39.  Hosny, K.M.; Said, W.; Elmezain, M.; Kassem, M.A. Explainable Deep Inherent Learning for Multi-Classes Skin Lesion 

Classification. Appl. Soft Comput. 2024, 159, 111624, doi:10.1016/j.asoc.2024.111624. 

40.  Arshed, M.A.; Mumtaz, S.; Ibrahim, M.; Ahmed, S.; Tahir, M.; Shafi, M. Multi-Class Skin Cancer Classification Using Vision 

Transformer Networks and Convolutional Neural Network-Based Pre-Trained Models. Inf. 2023, 14, 

doi:10.3390/info14070415. 

41.  Kavitha, C.; Priyanka, S.; Kumar, M.P.; Kusuma, V. Skin Cancer Detection and Classification Using Deep Learning 

Techniques. Procedia Comput. Sci. 2024, 235, 2793–2802, doi:10.1016/j.procs.2024.04.264. 

42.  Gururaj, H.L.; Manju, N.; Nagarjun, A.; Manjunath Aradhya, V.N.; Flammini, F. DeepSkin: A Deep Learning Approach for 

Skin Cancer Classification. IEEE Access 2023, 11, 50205–50214, doi:10.1109/ACCESS.2023.3274848. 

43.  Pandey, A.; Teja, M.S.; Sahare, P.; Kamble, V.; Parate, M. Skin Cancer Classification Using Non ‑ Local Means Denoising and 

Sparse Dictionary Learning Based CNN. J. Electr. Syst. Inf. Technol. 2024, doi:10.1186/s43067-024-00162-0. 

44.  Kumar, A.; Vishwakarma, A.; Bajaj, V.; Mishra, S. Novel Mixed Domain Hand-Crafted Features for Skin Disease Recognition 

Using Multiheaded CNN. IEEE Trans. Instrum. Meas. 2024, 73, 1–13, doi:10.1109/TIM.2024.3370772. 

45.  A, R.S.; Chamola, V.; Hussain, Z.; Albalwy, F.; Hussain, A. A Novel End-to-End Deep Convolutional Neural Network Based 

Skin Lesion Classification Framework. Expert Syst. Appl. 2024, 246, 123056, doi:10.1016/j.eswa.2023.123056. 

46.  Tschandl, P.; Rosendahl, C.; Kittler, H. Data Descriptor: The HAM10000 Dataset, a Large Collection of Multi-Source 

Dermatoscopic Images of Common Pigmented Skin Lesions. Sci. Data 2018, 5, 1–10, doi:10.1038/sdata.2018.161. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of Dasinya Journal and/or the editor(s). Dasinya Journal and/or the editor(s) disclaim 

responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the 

content. 

 


