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Abstract 

Earlier diagnosis of pulmonary disease is greatly significant in enhancing treatment 

impacts and lowering systems' medical workload. As increasingly more cases of 

pulmonary disease accumulate, methods of deep learning (DL) have increasingly become 

a viable option towards assisting physicians with diagnoses, particularly through the 

interpretation of chest X-ray (CXR) images. This paper presents the latest DL-based 

models and methods for early detection of lung diseases and evaluates their performance 

and accuracy of disease classification. It also demonstrates the power of ensemble 

learning methods, a combination of ResNet, EfficientNet, and Inception models, for 

enhancing the accuracy and reliability of diagnosis systems, especially in handling 

complicated patterns of diseases. The study seeks to introduce newer directions for 

research and explore the direction towards intelligent and scalable diagnosis solutions 

that can potentially make a critical contribution towards enhanced early detection and 

improving the quality of patient care. 
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1. Introduction 

Pulmonary conditions such as pneumonia, chronic obstructive pulmonary disease (COPD), tuberculosis, lung 

cancer, etc., are found more frequently nowadays. These conditions are becoming increasingly harmful, making it 

more challenging to maintain a high quality of life for patients. Traditional diagnostic techniques primarily rely on 

X-ray imaging to detect structural damage in the lungs. However, these methods depend heavily on expert 

interpretation, which is subjective and difficult to standardize or disseminate.[1]. Recently, recent advances in DL 

models have revolutionized the medical imaging area by means of computerized, highly precise diagnostic techniques. 

In fact, using various architecture models in ensemble learning techniques is an effective method to improve the 

detection accuracy of X-ray based detection systems, making it possible to detect in advance a variety of lung 

diseases[2].Combining diverse DL architectures within a single model framework is one of the effective ways to 

capitalize on the power of DL towards lung disease detection. Researchers, for example, in UNet-Based Lung 

Segmentation and Ensemble Learning with CNN-Based Deep Features for Automatic COVID-19 Detection and 

Diagnosis of Lung Diseases Using Deep Learning Architecture from X-Ray Images," are leveraging ensemble models in 

an effective manner [3]. These ensemble models take the strengths of different CNN-based architectures and thus 

obtain complementary features from every model to improve performance. Apart from these, the techniques 

emphasize the superiority of ensemble learning for lung segmentation in complex and varying datasets, especially due 
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to COVID-19 datasets[4].With this latter ensemble approach trend in methodologies, the research here develops an 

improvement on certain of the present DL models and, by doing that, provides a strong foundation for premature lung 

disease detection with the application of X-ray image diagnostics. Following inspiration from methodologies that 

incorporate stacked ensemble learning on deep multi-model CNN models to diagnose children's pneumonia, hence, 

this would offer more accurate and reliable methods of diagnosis and classification of lung diseases, thus enabling the 

augmentation of early diagnostic interventions. This study is expected to add to the continued advancement of 

increasingly emerging diagnostic approaches through DL, thus offering scalable, accurate diagnostic options that are 

easily accessible for the detection of lung diseases[5]. 

The aim of this article review studies using DL models to detect and classify lung disease, analyzing techniques, 

methodologies, and performance metrics. It discusses challenges, opportunities, and potential areas for further study 

in early detection of lung diseases. 

The rest of this article is structured as follows: section 2 gives an overview of the background and theory, 

including DL models and Ensemble Learning. Also, challenges facing the process of early detection against lung 

diseases are presented in section 3.  Section 4 provides an overview of related works conducted about previous 

studies. Findings from the literature are discussed in-depth in Section 5. Section 6 presents all the assessments and 

recommendations for lung disease detection. In addition to the future directions. Finally, Section 7 concludes the paper 

and summarizes the main ideas derived from the models used to detect and classify lung diseases. 

2. Methodology 

This is done in following well-established review procedures for ensuring greater transparency. A search is 

conducted in the following databases: PubMed, Scopus, Web of Science, IEEE Xplore, and Google Scholar using 

Boolean-operated search strings like (“Deep Learning” OR “CNN”) AND (“Lung Disease” OR “Pneumonia”) AND 

(“Early Detection”). 

The selection of the studies for the review included certain criteria, which included peer-reviewed 

English-language publications from January 2019 to December 2024, specifically targeting deep learning for the 

identification of lung disease. These criteria excluded editorials, as well as publications that only presented traditional 

machine learning concepts. The data that was retrieved was focused on the publication characteristics, deep learning 

model specifics, as well as the specified performance metrics, which have included figures such as accuracy, 

sensitivity, and specificity. This analysis qualitatively assists in an efficient synthesis of the existing literature, revealing 

insights regarding the role played by AI-based techniques in the diagnosis of pulmonary diseases. 

3. Background Theory 

The lung Diseases, including lung cancer, COPD, pneumonia, and tuberculosis, remain a serious public health 

issue worldwide. Early diagnosis is key to enhance outcomes for patients and to lower costs related to care [6]. 

Conventional methods of diagnosis include X-rays and CT scans, and MRIs, which often require the expertise of skilled 

radiologists, thus presenting delays and possible errors. Deep learning, a branch of a wide variety of methods termed 

artificial intelligence, has increasingly proved a formidable tool in the automation of medical image analysis. CNN and 

other sophisticated architectures such as ResNet, Inception, and EfficientNet have identified disease-related patterns in 

chest radiographs with a good record of performance. Ensemble models, which incorporated diffrent DL architectures, 

further enhanced detection accuracy by capturing an expanded range of features [7]. 

3.1 Deep Learning (DL) 

  Deep learning, a branch of artificial intelligence, has fundamentally transformed medical imaging by way of 

extracting complex features from big-picture datasets. CNNs, which are prevalent in deep learning architectures, 

express spatial hierarchies in images to discriminate between healthy and diseased tissue in chest radiographs [8],[9]. 

EfficientNet Inception,ResNet, and are a little sophisticated models that have broadened DL, enabling the net to learn 

different patterns in diverse lung diseases. Ensemble models, which combine the results of architectures of multiple 

deep learning, are meant to improve diagnostic accuracy, boost robustness, and reduce errors. Accurate classification 

of lung diseases like lung cancer, pneumonia, COPD, and TB, and quick detection by doctors, have improved patient 
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outcomes. Deep learning has become a significant contributor to fighting respiratory diseases through constantly 

evolving models [10]. 

3.1.1 Convolutional Neural Networks (CNNs) 

Medical image processing for early lung disease detection including lung cancer, pneumonia, and COPD depends 

critically on convolutional neural networks (CNNs). They extract hierarchical aspects from challenging data, therefore 

offering improved classification accuracy and powerful feature representation. Lung disease detection seems 

promising for advanced CNN designs like ResNet, Inception, and EfficientNet. By means of data augmentation and 

transfer learning, they may control tiny medical datasets and foster generalization. Combining CNNs with hybrid 

architectures and ensemble learning will help to increase early lung disease detection and diagnostic accuracy [11],[12]. 

3.1.1.1 ResNet 

Using residual connections, ResNet a DL model created by Kaiming He and associates in 2015 solves the 

vanishing gradient challenge in extremely deep networks. This lets the network avoid several layers, hence allowing 

the building of rather deep networks like ResNet-50 and ResNet-101 free from performance loss. The model ResNet's 

design is very successful for challenging image processing problems like lung disease detection in chest X-rays. Its 

deep feature extraction powers help it to detect hierarchical patterns in photos, hence improving diagnosis accuracy. 

Data augmentation is crucial since ResNet's deep networks may overfit on limited samples and might be 

computationally taxing. ResNet's design is computationally intensive and may overfit on small datasets, hence data 

augmentation is crucial even if its high accuracy [13]. 

 

Figure 1. ResNet Model [13]. 

3.1.1.2 Inception (GoogLeNet) 

Inception or GoogLeNet, in short, is one deep learning model proposed by Google for increasing the processing 

accuracy of photo classification systems along with efficiency. The module-based design enables it to convolve features 

with several filter sizes to gather information from a broad spectrum at different levels. This works well with complex 

applications, such as early lung disease detection, since different patterns can relate to different diseases like 

pneumonia, TB, and lung cancer. This design features 1×1 convolutions that reduce dimensionality, hence preserving 

efficiency by not piling up the processing burden. All this makes it scalable and available for use in medical imaging, 

for example. Chest X-rays can reveal complicated signs of lung diseases. Another advanced model, ELREI, combines 

Inception with ResNet and EfficientNet [14] to improve performance in classifying lung diseases. 

 

Figure 2. Inception (GoogLeNet) Model [14]. 
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3.1.1.3 VGGNet 

VGGNet, being a deep convolutional neural network, is popular for image classification, medical imaging, and 

lung disease diagnosis [15]. VGGNet uses very small 3x3 filters in convolutional layers to draw out high-level 

information that aids in the detection of faint patterns in chest X-rays such as indications of lung disease like 

malignancy, TB, and pneumonia. VGG-16 and VGG-19 models are composed of 16 and 19 layers, respectively, 

allowing them to differentiate between various lung diseases. VGGNet is appropriate for special medical data sets and 

will likely have cross-talks with transfer learning and fine-tuning methods. Its effective feature extraction capability 

makes it a useful tool for early and efficient diagnosis of lung disease from medical images due to its characteristic, 

stratified structure and large feature representation capability [16]. 

 

Figure 3. VGGNet Model [15]. 

3.1.1.4 MobileNet 

Google developed a deep learning model called MobileNet, which intended to have high accuracy with reduced 

pro-cessing needs. As a result, it is suitable for mobile or embedded device applications such as medical image 

processing. This architecture based on depthwise separable convolutions decomposes the traditional convolution into 

two parts: first point-wise (1x1) convolution, which integrates the outputs, and then depthwise convolution, which 

applies a different filter to every input channel. Since this reduces the computing cost and model parameters without 

sacrificing performance, MobileNet is able to capture minute invariants from medical images while maintaining its 

lightweight nature. It facilitates identifying lung disorders in a resource-constrained setting, like general or rural areas 

with either mobile health service or scarce processing resources in clinics. Generally, MobileNet is adopted with 

transfer learning and fine-tuning on specialized medical data. It can be part of hybrid models and ensembles with 

complex models to enable earlier detection of lung diseases [17].  

 

Figure 4. MobileNet Model [17]. 

3.1.2 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are deep learning models that are useful for early identification of pulmonary 

diseases. They can retain information from previous steps in the data sequence, enabling them to learn temporal 

dependencies essential for medical diagnostics. This is crucial for identifying lung diseases where progression can be 

monitored over time. RNNs can evaluate alterations and patterns within sequences of medical images or patient data. 
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Integrating RNNs with CNNs in lung disease detection improves the model's ability to capture spatial features and 

temporal features that may indicate disease progression [18]. This method may enhance the precision of early detection 

for diseases like pneumonia, tuberculosis, lung cancer and COPD, where timely intervention significantly influences 

treatment results. Thus, combine RNNs into a DL framework is a promising approach to improving early detection 

capabilities for lung disease diagnosis [19]. 

3.1.2.1 Long Short-Term Memory (LSTM) 

Long Short-Term Memory networks are an improved variant of RNN, showing their particular utility in 

applications with time-ordered information, including voice recognition, text processing, and medical time-series data. 

The goal is to capture long-term relationships in sequential data. Since LSTMs can consider imaging data over time, or 

respiratory signals, or patient health records, they make use of small patterns that point toward the onset of a disease. 

This allows the detection of lung problems much earlier than would otherwise be possible. Unlike other RNNs, LSTMs 

avoid the issues of vanishing and bursting gradients. They can maintain information for really long periods using 

memory cells and methods of gating that precisely regulate information flow. Application of LSTM in an advanced 

deep learning model for the detection of lung diseases can expose relevant trends in complicated temporal data, hence 

allowing early and accurate diagnosis [20]. 

 

Figure 5. LSTM Model [20]. 

3.2 Ensemble Learning  

In machine learning, ensemble learning is a powerful method that combines the predictions of several models to 

enhance robustness and overall performance [21]. Combining numerous algorithms in ensemble learning helps to 

reduce overfitting risk and improve generalization capacity of the model across several datasets. Therefore, combining 

the ideas taken from models that were trained to detect various disease patterns or traits may be particularly useful for 

early identification of lung diseases. Combining ResNet, EfficientNet, and Inception-v3, each model is allowed to play 

to its strengths: capturing complex hierarchical features for ResNet, economy of parameters for EfficientNet, and 

multi-scale processing capabilities for Inception. This cooperation, through the use of numerous techniques for 

identifying minute image traits, improves accuracy in detecting diseases such as lung cancer, pneumonia, COPD, and 

tuberculosis. Since the prediction dependability assures early and accurate diagnosis of lung disease, generally 

ensemble learning elevates the diagnostic models further [22]. 

3.2.1 Stacking 

In ensemble learning, stacking is one of the techniques where simple learners make predictions that a meta-learner 

uses in making the final prediction. Early detection of lung diseases is based on this method since the diagnosing 

accuracy for deep learning models, such as CNNs, ResNet, and MobileNet, is boosted. The stacking involves 

combining predictions in order to generate a more complete model; hence, the reliability of these early detection 

systems increases, likely offering a more accurate diagnosis in the clinical setting [23]. This tiered approach is especially 

helpful in medical imaging. 
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Figure 6. Stacking Technique [23]. 

 3.2.2 Boosting 

Boosting is a form of ensemble learning through which a set of weak learners is iteratively trained to correct 

mistakes made by each other at every subsequent step, hence further improving the model's performance. One strong, 

accurate model result from this iterative process that accumulates advantages of all students, hence decreasing 

variance and bias. Boosting highlights critical occurrences such as TB, pneumonia, and lung cancer, hence improving 

deep learning models used for chest X-ray classification in the early detection of lung conditions. This type of focused 

augmentation helps the diagnostic tool in terms of accuracy and reliability by facilitating the model in capturing the 

minor features and complicated patterns present in the medical images [24]. 

 

Figure 7. Boosting Technique [24]. 

3.2.3 Bagging (Boot Strap Aggregation) 

The ensemble approach helps in training several models on random portions of the available data. The method is 

mostly known as bagging, and it improves model correctness and stability by doing bootstrap aggregation. With this 

approach, original training data for every model iteration is a guarantee, thus lowering overfitting and improving deep 

learning models in the early detection of lung disease. By averaging numerous model predictions through bagging, we 

improve the accuracy of spotting small symptoms in illnesses such as lung cancer, tuberculosis, and COPD. Because it 

mitigates impacts that may be brought by bias from a single model, it serves as a more reliable diagnostic tool [25]. 

 

Figure 8. Bagging Technique [25]. 
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4. Challenges of Deep Learning in lung Disease Detection 

Data limitations and human variability are the major problems concerning DL for lung disease diagnosis. 

Insufficient datasets and information from imaging discourage the development of robust models. Since most lung 

disorders have a slow onset, monitoring the progression of such disorders is quite difficult. Patient characteristics like 

age and socioeconomic background affect disease presentation and model performance [26]. 

4.1 Dataset Collection and Complexity 

The accurate diagnosis of lung diseases using deep learning is heavily dependent on the existence of large-scale, 

high-quality, well-annotated medical image datasets. Strict privacy policies, limited patient access, and the expensive 

price of expert annotations generally discourage the acquisition of such datasets, however. These limitations are part of 

the reasons why models trained on suboptimal or homogenous data are developed, hence limiting their 

generalisability to different patient populations and clinical environments. Furthermore, the intrinsic characteristic of 

medical images defined by fine patterns and integrating details requires high-level structures that are able to detect 

subtle visual cues, hence requiring large and varied datasets [27]. 

4.2 Growth and Progression of Disease 

Pulmonary conditions often develop gradually and have mild radiographic appearances in the early stages. These 

beginnings are often not perceivable, even by expert radiologists; therefore, early diagnosis is particularly challenging. 

Although early intervention significantly improves patient outcomes, most deep learning models are developed to 

observe static, single-timepoint images and cannot follow the course of a disease over time. This limitation seriously 

hampers their capability of detecting faint temporal patterns and detracts from performance on early-stage detection 

and longitudinal monitoring. The challenge requires an approach involving temporal modeling using recurrent neural 

networks or transformer models able to learn sequential data across several imaging sessions [28]. 

4.3 Patient's Age and Socioeconomic Status 

The generalizability of deep learning models in pulmonary diagnostics is significantly hindered by demographic 

and socioeconomic variables. In geriatric populations, multi-morbidity (e.g., congestive heart failure alongside 

pneumonia) and complex clinical profiles create overlapping radiographic shadows that obscure pathological features, 

leading to higher false-negative rates. Socioeconomic disparities introduce technical "domain shifts"; models trained on 

high-fidelity images from premier institutions often lose sensitivity when processing lower-resolution, "noisy" images 

common in resource-limited settings. Furthermore, reliance on homogeneous datasets primarily sourced from Western 

institutions encodes algorithmic bias, which degrades diagnostic accuracy for underrepresented groups and 

exacerbates health inequities. Consequently, incorporating demographic and technical diversity during training and 

multi-center validation is a critical technical necessity, not just a social goal. Achieving clinical fairness and ensuring 

model reliability across diverse, real-world populations requires a rigorous commitment to representative data to 

mitigate these systematic biases [29]. 

5. Literature Review 

In the literature, recently, quite a lot of research has been presented in order to advance lung diseases through 

early detection and their prediction. This section reflects upon various methods applied regarding different types of 

lung disease detection, approaches toward data collection, challenges faced by researchers, problem domains, and 

techniques employed for problem-solving, and strategies adopted while developing a robust model on DL. 

5.1 Synthesis by Imaging Modality and Task 

The literature primarily bifurcates research based on the source of clinical data: Chest X-rays (CXR) and 

Computed Tomography (CT). 

Chest X-ray (CXR) Analysis: CXR remains the most common modality due to its accessibility. Studies such as 

those by Reddy and Khanaa [34] and Bhattacharya et al. In [35] focus on multi-class classification (e.g., COVID-19, 

Pneumonia, and healthy states). While Reddy [34] reported a perfect 100% accuracy using the ACL model 

(CNN-LSTM-Attention), such results often indicate overfitting to specific dataset characteristics rather than clinical 
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generalizability. Similarly, Manoharan et al. [45] achieved over 98% accuracy using an ensemble of ResNet and 

Inception-v3, though they noted that success remains highly dependent on image quality. 

CT and HRCT Analysis: For more complex conditions like Interstitial Lung Disease (ILD) or localized nodules, CT 

scans are preferred. Li et al. [31] utilized High-Resolution CT (HRCT) with a hybrid U-Net++ for segmentation and 

MobileUNetV3 for classification. While reaching high precision, the computational cost and lack of dataset variety 

remain significant barriers to deployment. Pradeep and Rajesh [37] further demonstrated that Recurrent Residual 

U-Net (R2U-Net) outperforms traditional watershed algorithms for nodule detection in DICOM datasets. 

5.2 Model Families: From CNNs to Hybrid Ensembles 

Research has shifted from standard sequential models toward hybrid and ensemble architectures to capture both 

spatial features and long-range dependencies. 

CNN and Lightweight Architectures: Standard CNNs continue to provide a baseline, but recent work emphasizes 

efficiency. Hasan et al. [41] proposed SqueezeNet-based lightweight architectures for real-time implementation, 

achieving 85.21% accuracy. While lower than some "heavy" models, these architectures offer better feasibility for 

resource-constrained clinical settings. 

Hybrid and Attention Models: To improve feature extraction, researchers have integrated different network types. 

The CCDC-HNN [33] utilizes a 3D-CNN for feature extraction from CT scans, achieving 99.61% accuracy. Likewise, 

Abed et al. [52] proposed an F-RNN-LSTM model to handle the temporal and spatial complexities of differentiating 

COVID-19 from standard pneumonia. 

Ensemble Learning: Multiple studies confirm that combining models (Ensemble) reduces the variance of 

individual learners. Siddiqui et al. While [47] fused EfficientNet variants (B0, B1, B2) to outperform single-model 

techniques in detecting TB and Pneumonia. Similarly, the PulDi-COVID [44] and ELREI [45] frameworks demonstrate 

that voting or stacking mechanisms provide more stable diagnostic outcomes than individual DCNNs. 

Deep learning (DL) models have been promising to detect lung diseases but with certain limitations. First, they 

have to be trained with millions of parameters, hence are computationally expensive. Second, they were initially 

designed for binary classification; hence their performance is constrained when used in multi-class settings. Third, 

generalizability to diverse datasets is questionable because models work well on provided datasets but not when new 

or unseen data is presented to them. Fourth, performance on skewed datasets can lead to intrinsic underperformance 

on rare disease or underclass representation. Fifth, clinical integration and validation are necessary in that the models 

must be validated in real-world healthcare settings for validity and utility. Sixth, intrinsic model problems unique to an 

individual disease prevent the creation of generic universal solutions. Lastly, there is a tremendous shortage of 

standard metrics and benchmarking in the evaluation of model performance, which is critical in consistent 

benchmarking and comparison of different approaches to lung disease diagnosis. These loopholes must be filled to 

ensure effectiveness and usability of deep learning models in clinical diagnostics. 

Table 1.  Review of Lung Disease Detection Using Deep Learning Models. 

Referen

ce 
Dataset Model 

Image 

samples 

Performance 

Evaluation 
No. of Classes No. of Parameter Dataset state 

[30] 

2024 

COVID-19 

Image Data 

Collection, 

Actualmed-

COVID-ches

txray 

DCNNs 
16,435 

chestxray   

4 Class 94%, 3 

Class 95%, 2 

Class 99%, 2 

Class 98% 

Multi 

classification 

and Binary 

classification 

does not include 

the specific 

architecture details 

Imbalanced Dataset 

[31] 

2024 

MedGIFT 

database 

 

 

ResNet, 

MobileUNetV3 

4000 HRCT 

slices 
99.1% 

Multi 

classification 

 

8,045,347 Imbalanced Dataset 

[32] 

2024 

 (TCIA) and 

(TCGA)  
ResNet, VGG, 

MRI, CT 

scans, PET 

scan,X-rays 

92.5 %, 

 

binary 

classification 
N/A Imbalanced Dataset 

[33] 

2023 

LIDC-IDRI 

database, 

the LUNA 16 

dataset 

Inception v3 1,463 CT scan  95%  
binary 

classification 
N/A Imbalanced Dataset 

https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
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[34] 

2023 

Chest X-Ray 

Images 

(Pneumonia)

, 

COVID-19 

chest xray 

CNN models 
1061 CX-R 

samples 
96%. 

Multi 

classification 

 

N/A Imbalanced Dataset 

[35] 

2023 

Lungs 

Disease 

Dataset 

(4 types) 

 

CNNs Models 
502 CXR 

images 
accuracy 98.2% 

Multi 

classification 

 

N/A Imbalanced Dataset 

[36] 

2023 

Tuberculosis 

Chest X-rays 

(Shenzhen), 

Chest X-Ray 

Images 

Pneumonia 

ResNet50, 

ResNet101 

(1814) Chest 

X-rays  

98.43% for 

pneumonia, 

99.4% for 

tuberculosis, 

and 99.9% for 

cancer detection  

Multi 

classification 

 

138000,000 Imbalanced Dataset 

[37] 

2023 

(TCIA) 

repository 

VGGNet, 

ResNet, and 

Inception 

1000 CT scan 

images 

DBN 93.50 

SAE 

96.25 

CNN 94.65 

binary 

classification 
N/A Imbalanced Dataset 

[38] 

2023 

 (PLCO, 

NLST) 

dataset 

Inception v4, 

ResNet34. 

147,497 x-ray 

images  

 

N/A 
binary 

classification 
N/A Imbalanced Dataset 

[39]  

2023 

Not 

applicable 

CNN models 

architecture 

15,000 CT 

scans images  
95% 

binary 

classification 
N/A Imbalanced Dataset 

[40] 

2023 

LUNA16 

Database: 

CNN 

architecture 
888 CT scans 97%  

binary 

classification 
N/A Imbalanced Dataset 

[41] 

2023 

(LIDC-IDRI) 

dataset 

 

ResNet, 

SqueezeNet, 

MobileNet 

7556 CT scan 

 
85.21% 

binary 

classification 
N/A Imbalanced Dataset 

[42] 

2023 

LUNA 16 

Data set 
ResNet 

doesn't 

specify the 

exact number 

of CT scans 

95%  
binary 

classification 
N/A Imbalanced Dataset 

[43] 

2023 

Not 

applicable 

ResNet18, 

InceptionV3, 

DenseNet121, 

DenseNet169,  

5856 chest 

X-ray images 

DenseNet169 

97.79%.  

DenseNet2097.7

90% MobileNet 

97%, DenseNet 

94% 

binary 

classification 

(MobileNet 

2,665,473) 

(DenseNet121 

4,632,897) 

(DenseNet169 

8,544,833) 

(DenseNet201 

12,741,185) 

Imbalanced Dataset 

[44] 

2023 

NIH 

ChestX-ray8, 

Chest X-ray 

Images 

VGG16, 

ResNet50, 

ResNet152V2, 

MobileNet 

10800 x-ray 

images 

images 

99.70 % 

Multi 

classification 

 

N/A Imbalanced Dataset 

[45] 

2023 

COVID-19 

Radiography 

Database 

Inception-v3, 

ResNet, 

EfficientNet 

 21165 x-ray 

images 

images 

99%  
Multi 

classification 
N/A Imbalanced Dataset 

[46] 

2022 

Montgomery 

County 

X-ray set, 

Shenzhen 

Hospital 

X-ray set 

ResNet-101, 

ResNet-50, 

Vgg-19, 

SqueezeNet 

800 X-ray 

images 

 

98%. 
binary 

classification 
N/A Imbalanced Dataset 

[47] 

2023 

Chest X-ray 

Images 

EfficientNet-B0, 

EfficientNet-B1 

EfficientNet-B2 

not explicitly 

mentioned 
98% 

Multi 

classification 

 

N/A Imbalanced Dataset 

[48] 

2022 

covid-19-ima

ge-repositor

y,  

 

chest-xray-p

neumonia,   

RSNA 

VGG-16, 

ResNet-50, and 

InceptionV3 

80,000 

 X-ray images 

96.48 %  

 

Multi 

classification 

 

24,622,470  

 
Imbalanced Dataset 
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Pneumonia 

Detection  

[49] 

2022 

Sapporo 

Medical 

University 

Hospital  

CNNs Models 

1159 chest 

radiograph 

images. 

95% 
binary 

classification 
N/A Imbalanced Dataset 

[50] 

2022 

covid-chestx

ray-dataset 
CNNs Models 

not 

mentioned 

0.970936 

 

Binary and 

Multi 

classification 

N/A Imbalanced Dataset 

[51] 

2022 

NIH Chest 

X-rays,  

(OCT) and 

Chest X-Ray 

Images 

ResNet, 

Efficientne 

 50,624  

X-Ray Images 
92.60% 

Multi 

classification 

 

N/A Imbalanced Dataset 

[52] 

2021 

(C19RD)  

(CXIP)  

ResNet23, 

Inception_V2 

C19RD (2905) 

samples  

CXIP (5856) 

samples  

C19RD (95.04) 

Multi 

classification 

 

N/A Imbalanced Dataset 

 

6. Discussion 

 The studies' comparison in Table 1 shows the higher maturity and performance of deep learning techniques in 

the classification of pulmonary disease from medical images. PulmoNet [30], MobileUNetV3 [31], and MFDNN [32] 

models achieved high accuracy (92.5% to 99.1%) for multi-class and binary classification. The experiments demonstrate 

the potential of DL models in handling complex medical features. Interestingly, the CNN-sequential model [36] 

registered superlative performance levels at 99.9% cancer detection, supporting the credibility of deep CNN 

architectures for implementation in real diagnosis use. In spite of the persisting success of the majority of models, the 

analysis exposes fundamental limitations. Most research is conducted on unbalanced datasets and yet achieves 

astonishing results e.g., 99% accuracy for ELREI [45], 99.7% for PulDi-COVID [44], which indicates that existing 

architectures, especially ensemble and hybrid models, can in some way counterbalance unbalanced data distribution. 

However, there are limited papers that even report model complexity, i.e., CNN-sequential with over 138 million 

parameters [36] and VGG19+CNN with 24.6 million parameters [48], which makes reproducibility and transparency 

difficult. Most submissions have "not explicitly stated" in the architecture details, and computational efficiency and 

scalability comparison becomes impossible. Furthermore, X-ray images are the undisputed gold standard modality, 

logically so since they are easily obtained and cheap, with CT, MRI, and PET images languishing in their unused 

potential, although they possess greater resolution or functional imaging capacity. This trend, seen on datasets such as 

NIH ChestX-ray8 [44] and COVID-19 Radiography Database [45], challenges the overall generalizability of the models 

to more advanced types of images. Another key trend is the growing usage of ensemble models (e.g., ELREI [45], Deep 

ensemble CNN [42]) and multi-architecture systems like MobileNet + DenseNet [43], which are more resilient. These 

findings confirm the theoretical advantages of averaging various feature extractors for improved generalization. 

Architectural strengths propel the strong performance of models such as EfficientNet, which applies balanced scaling 

to achieve the refinement needed for pathology, and Ensembles (ELREI), which integrate ResNet’s deep extraction and 

Inception’s multi-scale analysis. 

Although these models have a near-perfect success rate, they still have challenges in being implemented. It should 

be noted that these models require a lot of computing power, thus warranting the applicability of models such as 

MobileNets in resource-limited areas. Furthermore, the black-box approach in ensembles acts as a barrier to acceptance 

in the healthcare setting. Relevant studies should, therefore, focus on improving the applicability of these models. Yet, 

real-world deployment is discouraged by lack of adequate standardization of reporting and a lack of rigorous 

investigation of interpretability methods, which are fundamental to medical trust. Further, even though accuracy is a 

widely used measure, not much research fully reports other performance metrics like sensitivity, specificity, or 

F1-score, which are critical in evaluating medical diagnostic systems. 

 

 

 

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
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6.1 Analysis of Trend, Issues and Future Directions of Lung Disease Detection Using Deep Learning 

In this section, the overall review of the work available is given, which is the final contribution explained in this 

paper. Trend analysis of every attribute explained in the previous section is defined, wherein the intention is to point 

out the works progress and how the researchers are trending over the past five years. The indicated trend may be 

helpful to indicate the direction of the literature in this field. Section 5.1.1 presents the trend of the articles considered. 

The issues and the future work to be undertaken in rectifying the problems found are detailed in Section 5.1.2 

6.1.1 Trend Analysis of the Image Type Used 

Fig 9, shows the trend of types of medical images (X-ray, CT, MRI) used in deep learning-based studies for 

detecting lung disease between 2021 and 2024. The X-ray type is the most commonly used type and has a steep spike in 

2022 and 2023. CT also increases in the year 2023 but is less used than X-rays in aggregate. MRI was used to a very 

small extent, and moderate expansion alone happened in the year 2024. The pie chart shows that X-ray contributes 

56.4% of examinations, CT scans contribute 38.2%, and MRI and PET are used to a very small extent and contribute 

only 3.6% and 1.8%, respectively. 

 

Figure 9. (a) The trend of the usage of image types in lung disease detection works in recent years; and (b) the distribution 

of the image type used in deep learning aided lung disease detection in recent years. 

6.1.2 Compares the performance of the models 

Fig. 10 compares plotting deep learning models for diagnosing lung disease, with CNN-Sequential, 

PulDi-COVID, and ELREI being the highest-scoring classification accuracy among all of them, with accuracy greater or 

nearly equal to 99%. Such models reflect the potential of ensemble and hybrid-based models towards improved 

diagnostic performance. Lightweight DNN shows reduced accuracy at the cost of complexity and computational 

efficiency. Pre-trained models like DenseNet and MobileNet have shown uniform performance across different 

datasets. This contrast also indicates the strengths and weaknesses of each model and calls for more exploration into 

ensemble learning algorithms to produce the best diagnostic performance. 

 

Figure 10. Compares the performance of the models. 
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7. Practical Implications for Clinical Integration 

Deep learning algorithms like ResNet, EfficientNet, and Inception can potentially revolutionize clinical practice 

[53]. Their embedding in Picture Archiving and Communication Systems (PACS) is capable of enabling real-time 

radiologist decision-making in scenarios where there exists a shortage of skills or high levels of patient throughput. 

Diagnostic time can be minimized, errors avoided, and earlier intervention enabled in the treatment of progressive 

lung disease. Effective models like MobileNet can also be viable on embedded or mobile devices, facilitating AI-based 

diagnosis in resource-scarce and distant areas [54]. It can provide more access to health care, equalize equality of lung 

disease diagnosis, boost individualized treatment protocols, improved prognosis, and reduced healthcare cost. 

8. Recommendation and Future Direction  

Therefore, future studies should emphasize how pre-trained models can be improved by embedding the two giant 

pillars of ensemble learning techniques and designing customized DL architecture models to further increase the 

integration within the ambit of lung diseases detection [55,56]. Other models, including ResNet, EfficientNet, and 

Inception-v3, are bound to be fine-tuned on larger and more heterogeneous datasets that would improve their 

generalization capability and diagnostic accuracy on various clinical settings.  The rich diagnostic context and 

manifold effectiveness are created in DL models by the representation of medical imaging with its combination with 

patient clinical records [57]. This would go a long way in helping to solve those complex cases where diagnosis cannot 

be afforded purely on imaging.  Addressing dataset availability requires collaboration between institutions. These 

types of collaborations will promote access to a range of representative datasets that can be used in training DL models 

with images representative of the global variability in the presentation of lung disease. This will be the main step 

toward the development of models that can perform robustly across a wide range of clinical scenarios and patient 

populations [58,59]. 

In the future, pulmonary disease detection with deep learning will be done through refinement of ensemble 

learning techniques and further optimization of pre-trained models. Ensemble learning boosts the performance and 

robustness of predictions by integrating various models such as ResNet, EfficientNet, and Inception-v3, in terms of 

imaging efficacy. Future research should focus on fine-tuning these models with larger, more diverse datasets to 

capture global disease variability. In addition, adding data augmentation and multimodal learning will improve 

accuracy and sensitivity in early diagnosis and treatment. The area where the most progress is expected to be made in 

the coming years is in the application of Explainable AI (XAI) using tools such as Grad-CAM in order to provide visual 

explanations for the diagnosis made. In addition to this, the area that will greatly benefit from this changing landscape 

is the application of Temporal Modeling and the adoption of scalable architectures. 

9. Conclusion 

The pre-trained deep learning architecture holds much promise for the early detection of lung diseases. 

Powerfully promising models include ResNet, EfficientNet, and Inception-v3, since they are quite prominent in the 

identification of complicated patterns from chest X-rays and CT scans and thus serve well in conditions such as the 

diagnosis of lung cancer, COPD, and tuberculosis. Fine-tuning of such models assists in specific tasks, improving 

diagnostic accuracy with economized computational costs. Ensemble methods that combine such diverse models 

pretrained on different datasets further improve performance by capturing complementary features and subtle 

markers of disease. This advance enables early interventions and hence better outcomes for patients. Fully realizing the 

potential of these models clinically requires further refinement of high-quality datasets, appropriate transfer learning 

methodologies, and model interpretability techniques. 
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