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Abstract

This study presents an enhanced forecasting methodology for Iraq's cereal production by
integrating wavelet denoising with ARIMA modeling. Using annual production data (58
observations from 1961-2018), we demonstrate that preprocessing with the Daubechies
wavelet of order 2 and soft thresholding significantly improves forecast accuracy by
isolating noise while preserving trends. Our proposed wavelet-ARIMA hybrid model
outperforms classical ARIMA across some statistical criteria (RMSE and AIC), achieving
an increase in predictive precision through optimized signal decomposition. Empirical
results reveal that wavelet analysis constructs latent patterns in fluctuating agricultural
data that traditional methods overlook, enabling more reliable long-term projections.
Based on this framework, Iraq's cereal yields are forecasted to stabilize approximately at
4.03 million metric tons annually for the years 2019-2025, with a narrower confidence
interval than ARIMA alone. These results provide mainly two important contributions.
Firstly, a procedure that was validated for denoising of non-stationary agricultural time
series, which is often affected by random noise. Secondly, it brings useful
recommendations for decision-makers to mitigate the risks that are related to food
security, especially in dry climate areas. The adaptability of the proposed method
indicates that it can also be applicable to other product forecasting, where the volatility in
data makes traditional techniques less effective.
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1. Introduction

Agricultural production in Iraq remains one of the major parts of the national economy, offering employment and
food sources for a large part of the population. As reported by the International Food and Agriculture Organization
(FAO), the main cereal crops grown in Iraq are wheat, barley, rice, and other grains. The country’s agriculture mostly
depends on cereal crops to maintain both food availability and macroeconomic stability. However, Iraq has experienced
difficulties in sustaining and raising cereal production due to various factors, including water scarcity, increasing soil
salinity, and periods of political instability. Despite such challenges, significant progress has achieved by introducing
modern farming methods, improving agricultural technologies, and adapting a high-yield variety of crops[1]. These
developments have contributed to keeping the food supply and supporting rural livelihoods.

Several earlier studies have attempted to forecast agricultural production in Iraq using different methods. In 2016,
one study was conducted to analyze the impacts of climate change time-series data on Iraq’s agriculture sector,
including pattern changes in rainfall and temperature. The research highlighted the importance of adaptation strategies
to reduce the negative effects of climate change on crop productivity[2]. In the following year, a study applied the
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ARIMA model to forecast the wheat production in Iraq for 2017. The model achieved acceptable results in estimating
yield under several market conditions [3]. In 2018, researchers used a grouped method for predicting cotton production
depending on climate conditions, and the model performed effectively under different weather variations[4]. In the
same year, the Box -Jenkins approach was employed to estimate Iraq’s food production and the existing gap. The
selected models were ARIMA (1,0,1) for the gap and ARIMA (4,1,3) for production data. Although production was
increased, the food gap remained by 2025, which required continuing imports due to unmet demand[5].

Later studies emphasized the state support and introduction of modern agricultural technologies to boost cereal
production and improve the food security situation in the country[6]. In 2020, the water footprint method was applied
to examine cereal crops (wheat, rice, barley, and maize), showing that the import policy saved nearly 2,676 Mm? water
yearly and recommending more water-saving farming practices[7]. In the same year, another research was carried out
using the data from 1988 up to 2018, where the ARIMA (1,0,1) model was used for forecasting wheat production in
Iraq. The results showed that this strategy is effective for agricultural time series forecasts, and it predicted about 0.94%
yearly increase in wheat yield till the year 2028[8]. Another study that was done in 2023 investigated the food gap in
Iraq from 2003 to 2020. It revealed that the country’s major crops faced a deficit ranging between 48% and 100%, mostly
due to improper policies, insufficient water availability, and the problem of national security. The conclusion of that
study stated that economic restructuring is urgent and food security is at high risk[9]. Then, in 2024, other researchers
developed a hybrid ARIMA-ML model to forecast the wheat production between 2024 and 2033 in Iraq. The results
proved that the hybrid model gave more accurate predictions than traditional ARIMA, especially for nonlinear time-
series data when evaluated using RMSE[10]. At a similar time, another study applied the ARIMA (0,1,1) model to predict
the average annual cereal production for the upcoming three years. The findings confirmed that the ARIMA method
has strong potential for agriculture policy decision-making[11]. Another study in 2024 applied ARIMA models to assess
Iraq's barley self-sufficiency and food gap from 1990-2022. The best-fitting models, ARIMA (5,0,1) for self-sufficiency
and ARIMA (8,0,8) for the food gap, both indicate a persistent domestic production deficit that requires targeted
agricultural policies[12].

In very recent year specially in 2025, the authors used ARIMA modeling to forecast barley production in Iraqi
Kurdistan. After stabilizing non-stationary data from 1981 to 2023, the ARIMA (1,2,1) model was selected. The forecasts
for 2024-2030 predict a declining trend, highlighting a need for policy intervention[13]. Furthermore, in the most recent
study in 2025, the ARIMA (1,1,1) model was used for the prediction of rice production in Iraq until 2027. This analysis
underlined the existing uncertainty due to external factors and recommended using more improved models and
sustainable approaches for achieving food safety [14]. In the same year, the researchers forecasted global barley
production for 2025-2035 using country-level ARIMA models. The results show a geographic shift, with production
shares rising in countries like Turkey, Russia, and Australia, while declining in traditional producers like the US,
Germany, and Canada. This analysis underlined the existing uncertainty due to external factors and recommended
using more improved models and sustainable approaches for achieving food safety[14].

This study is driven by the urgent need of more precise forecast of cereal production in Iraq, as a support for future
food security strategies. Also, it comes due to the current limitation of ARIMA models in dealing with non-stationary
data, which is very common in agricultural time series. In addition, the wavelet decomposition technique is proposed
as it can enhance prediction accuracy and still keep interpretability. The study's remaining sections are arranged as
follows. The study's methodology will be covered in sections 2 and 3. The actual data will be subjected to the Box-
Jenkins methodology and wavelet analysis in Section 4. Section 5 will end with a few conclusions as well as
recommendations.

2. Box-Jenkins Method

The Box-Jenkins technique is a systematic strategy for selecting, fitting, and validating autoregressive integrated
moving average (ARIMA) models for time series data. This method consists of three main stages: identification,
estimation, testing, and application [15] [16].
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2.1. Stages of Box-Jenkins Methodology
2.1.1. Identification

The Box-Jenkins approach initiates with data preparation, involving cleaning data from outliers, transformations
to stabilize variance, and differencing to achieve stationarity in mean, or both if required. Subsequently, an optimal time
series model is identified by specifying the autoregressive order(p), differencing degree(d), and moving average
order(q). The key diagnostic tools for model selection include the autocorrelation function (ACF) and partial
autocorrelation function (PACF). The autoregressive integrated moving average model, denoted as ARIMA(p,d,q),
provides a structured framework for this analysis. This systematic process ensures robust time series forecasting[17],

eBA-pYe=0FB) e (1)

Here, Y:is observed time series data at time ¢, § is the backshift operator (f Yt= Yt-1), both ¢(B) and 6(B) represent
the autoregressive AR and moving average MA operators, respectively, ¢: is a white noise error term at time ¢,[15].

2.1.2. Estimation and Testing

Following model identification, the parameter estimation phase commences. The procedure employs either least
squares estimation (LSE) or maximum likelihood estimation (MLE) as primary techniques. Subsequently, the ARIMA
model's mathematical formulation is derived, representing the time series structure through its characteristic AR and
MA components.

Ye=C+ 0¥ 1+ 0V 5+ + Qth—p +é& — 0161 — 06 5 —— Hqgt—q @)

Here: c is a constant term, @ and 6 are unknown parameters, the p and g terms represent the lagged values of AR
and MA, respectively, and ¢; represents the error term. The best model will be selected depending on suitable criteria
such as the Root Mean Square Error RMSE, and Akaike's Information criterion AIC [15],[18]. After parameter
estimation, the model must be checked to guarantee that its residuals are white noise. This includes checking the
residuals' ACF and PACEF plots and doing the Ljung-Box Q test to ensure there is no substantial autocorrelation left [19],
(20], [21].

2.1.3. Application

The forecasting phase generates future values. This includes point estimates and confidence intervals using the
validated model. The final stage applies the derived time series patterns to produce statistically sound predictions.
Rigorous validation and evaluation of forecasts are critical to ensure model reliability and practical utility. Ultimately,
this process transforms analytical insights into actionable projections while maintaining statistical robustness [22].

3. Wavelet Analysis Method

Wavelet analyses have become an essential tool for simultaneously examining signals in both time and frequency
domains, offering valuable multidimensional insights [23]. Wavelet analysis overcomes Fourier analysis's key
limitation by providing localized time-frequency representations, unlike Fourier's global mapping, which lacks
frequency-specific-temporal resolution for non-stationary processes. This enables a more precise characterization of
transient signal features. [24]. According to [25], wavelet analysis is a mathematical technique that transforms time-
domain signals into alternative representations for enhanced processing. This method proves particularly effective for
non-stationary data characterized by time-varying means and autocorrelations. Given that, most time series data,
including agricultural datasets, exhibit nonstationary behavior, wavelet transforms have become essential analytical
tools for such applications.

Morlet originally formulated wavelets as a family generated through translations and dilations of a signal “mother
wavelet”. If the x(t) represents a signal, the wavelet transform can be expressed as:

¥ (@) = [ (0150 (O 3)
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When substituting this description in equation (3) gives the definition of the continuous wavelet transform CWT.
1 t—>b
T (b,a) = — f : (—)
Wi (b.@) = — | x4 (=) a® ©)

The degree of compression is measured by the parameter " a" often known as the scaling parameter or scale
(dilation). The translation parameter (shift), denoted by " b," establishes the wavelet's time frame location. The wavelet
in"a"is a compressed form of the mother wavelet (t) (reduced support in the time domain) and mostly corresponds
to higher frequencies if |a] < 1.1, ;(t) correlates to lower frequencies and has a wider time width than (t) when |a| >
1. The effectiveness of Morlet wavelets in signal processing and time-frequency analysis stems from their frequency-
adaptive time widths, which enable precise localization of signal features across varying temporal and spectral scales.

The wavelet transform is implemented using a multiresolution pyramidal decomposition approach. By applying
a pair of complementary filters, a high-pass filter (HiF-D) and a low-pass filter (LoF-D), a recorded digital time signal
S(n) can be decomposed into its detailed cD1(n) and approximation cA1(n) components, respectively. Analogous to
the discrete Fourier transformation in spectral analysis, the discrete wavelet transformation (DWT) serves as the
foundational tool for wavelet-based time series analysis [26]. For discrete-time applications, the discrete wavelet
transform (DWT) is used. This transform is grounded in sub-band coding, enabling efficient computation of wavelet
transforms. This method is computationally economical, requiring minimal resources and reduced processing time. For
a given real-world dataset {Y;}, dynamic decomposition can be performed by defining the scale parameter "a" as 27/
and the translation parameter "b" as K. 27/, where j, k € Z. Under this framework, a discrete wavelet function can be
mathematically expressed as follows:

1 1—K2/
Yi(t) = 51/) (T) (6)

3.1. Combined Wavelet-Arima Model

Since ARIMA models require stationary input data, noise in time series significantly degrades forecasting accuracy
[27]. To address this limitation, a wavelet-based denoising framework is proposed. The selection of decomposition
levels is critical, as it directly influences model performance in wavelet space [28]. The following steps outline the
wavelet-enhanced ARIMA methodology [29]:

1. Decomposition: The observed time series is transformed into wavelet space using (DWT).

2. Thresholding: Wavelet coefficients are modified via a selected shrinkage function and threshold criterion.
Coefficients below the threshold are either reduced or zeroed to suppress noise.

3. Reconstruction: The denoised coefficients are inverted via inverse (DWT) (IDWT), yielding a smoothed signal
with minimized noise.

4. Modeling: The ARIMA model is applied to the refined data.
Figure 1, summarizes this hybrid denoising and modeling framework. By isolating and filtering high-frequency
noise, wavelet preprocessing enhances ARIMA s robustness to non-stationarity while preserving structural patterns.

Estimate Threshold and |
Input Noisy E> ConductDWT E> shrink the coefficient of

Data {Decomposition) DWT
(Thresholding)

O

Re-build Output Filter <::| Take Iverse DWT

ARIMA ¢| '
model Denoised Data

(Reconstruction)

Figure 1. Building ARIMA model using wavelet denoising
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3.2. Combined Wavelet-Arima Model

The wavelet transform possesses a decorrelation property, such that coefficients across different levels exhibit
minimal to no correlation. This occurs because the transformation from the original series to wavelet coefficients to each
level effectively functions as a pass-band filter (Wavelet Threshold Estimators for Data with Correlated Noise ( PDFDrive ),
n.d.) Consequently, a distinct threshold 4j must be established for each decomposition level j. Various thresholding
strategies exist, including the Rigorous SURE, Minimax, and Universal approaches. This study employs the Rigorous
SURE threshold (RST), also known as SURE shrink, which utilizes Stein's Unbiased Risk Estimate criterion to derive a
statistically unbiased threshold. The (RST) algorithm optimizes threshold selection by minimizing the estimated risk,
making it suitable for noise reduction in wavelet-based signal processing [31].

3.3. Hard and Soft Thresholding

Wavelet coefficients at level j are subjected to either hard or soft thresholding after threshold estimation. Hard
thresholding follows a "keep or kill" principle: Coefficients below the threshold are set to zero while others remain
unchanged. In contrast, soft thresholding shrinks all nonzero coefficients toward zero, yielding a smoother denoised
[32]. Empirical evidence demonstrated that soft thresholding achieves lower variance compared to hard thresholding
[33]. Consequently, this study exclusively uses soft thresholding to optimize the ARIMA model's performance on the
dataset. The approach enhances noise reduction while preserving essential signal characteristics, which improves

forecasting accuracy.

3.4. Using Wavelet Families

Various wavelet families (e.g., Haar, Daubechies, Coiflets) are applicable for denoising. This study employs the
Daubechies wavelet. This is an extension of the Haar wavelet with multiresolution levels, selected for its advantageous
properties: smoothness, orthogonality, vanishing moments, and compact support. These features enable effective
pattern extraction and noise reduction in annual cereal data, ensuring robust analysis [34].

4. Application on Real Data

The study analyzes annual cereal yield data from Iraq (1961-2018), comprising (58) observations as shown in
figure2. The dataset retains actual values for 2019-2022 to validate forecast accuracy through comparison with predicted
values. Source data were obtained from the United Nations Database (Metadata-Countries, World Bank). This temporal
division enables robust model evaluation while maintaining sufficient observations for statistical significance.

(X 1.E6)

< F

Cereal Production
2

(O = a a . a .
1960 1970 1980 1990 2000 2010 2020
Year

Figure 2. Annual time series for cereal yields in Iraq

Figure 2 reveals non-stationary characteristics in Iraq’s cereal production time series, exhibiting both oscillatory
behavior and a consistent upward trend. Initial production of (1847205) tons in 1961 rose sharply to (2332325) tons in
1962, ultimately reaching (4290625) tons in 2018. The ACF as shown in Figure 3 demonstrates gradually decaying
autocorrelation coefficients, while the PACF as presented in Figure 4 shows an abrupt cutoff after two significant lags,
both indicative of non-stationarity. This is further confirmed by the Ljung-Box Portmanteau test (Q = 154.694, p < 0.01
at 19 lags), demonstrating highly significant autocorrelation. These diagnostic results collectively suggest the need for
differencing to achieve stationarity before modeling.
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Figure 3. ACF of annual cereal yields in Iraq
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Figure 4. PACF of annual cereal yields in Iraq

4.1. Stationarity test for the time-series data

The stationarity of time series data is evaluated using the augmented Dicky-Fuller (ADF) test, complemented by
ACF/PACEF analysis [35]. The test examines two hypotheses:
Ho: The series contains a unit root (non-stationary)
Hi: The series lacks a unit root (stationary)

The ADF stationary patterns test findings are displayed in Table 1.

Table 1. Findings of the ADF test

Significant Level Alpha=0.05
Time Series ADF After the First Difference
Cereal 2.872 -4.951

Production Data

P-Value 0.223 0.010

The ADF test results as presented in Table 1 indicate non-stationarity in cereal production data (test statistic = -
2.872, p = 0.223 at a = 0.05). The first differencing achieved stationarity (test statistic = -4.951, p = 0.01). Preliminary
Levene's test revealed significant variance non-stationarity (L = 13.169, p = 0.001), requiring logarithmic transformation
before differencing. Post-transformation ACF/PACF examination confirmed that first differencing is still required to
stabilize the mean.

Figures 5-6 present the transformed series and corresponding correlogram after these preprocessing steps. This
two-stage stabilization approach, logarithmic transformation for variance stabilization followed by differencing for
mean stabilization, aligns with standard time series preprocessing protocols when handling multiplicative non-
stationarity. The final transformed series demonstrates characteristics suitable for subsequent ARIMA modeling, with
both variance and mean fluctuations now appropriately controlled. The methodological validity in addressing both
variance and mean non-stationarity ensures more reliable parameter estimation and forecasting performance.
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Figure 5. The transformed series
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Figure 6. ACF and PACF of log of data after 1st differencing

4.2. Building an ARIMA Model
4.2.1. Model Identification Stage:

Following stationarity confirmation and analysis of ACF/PACF patterns as presented in Figure 5 multiple

candidate models were evaluated. After testing various ARIMA model specifications, ARIMA (0,1,1) emerged as the

best fit. It consistently delivered the lowest AIC and RMSE values, meaning it was not only simpler but also more

accurate in its predictions compared to alternatives like ARIMA (1,1,1) and (1,1,0). This balance of simplicity and

precision led us to select it for the final analysis. In other words, the ARIMA (0,1,1) specification demonstrated superior

performance, exhibiting lowest RMSE (696931) and AIC (26.943) values among competing models as shown in Table 2.

These selection criteria confirm its optimal balance of model simplicity and predictive accuracy for the analyzed time

series.

Table 2. The chosen model relied on statistical criteria with the lowest values

Criteria
Model
RMSE AIC
ARIMA (0,1,1) 696931 26.943
ARIMA (1,1,1) 704717 27.001
ARIMA (1,1,0) 701264 26.956

4.2.2. Model Estimation Stage:

The ARIMA (0,1,1) model was selected based on ACF/PACF analysis and statistical criteria. As presented in Table
3, its moving average (MA) parameter is statistically significant (p<0.05), confirming the model's robustness for the

stationary time series.
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Table 3. Results of estimating the best model

The Ideal Model  Parameter Standard T-Value P-Value
Error S.E.
ARIMA (0,1,1) MA =0.729 0.092 7.940 0.000
4.2.3. Model diagnosis Stage:

Figure 7 demonstrates that the standardized residuals of the ARIMA (0,1,1) model exhibit random dispersion
around zero, with ACF/PACF values statistically dominant within 95% confidence bounds. The Ljung-Box test (Q
=12.515, p = 0.820) confirms no significant residual autocorrelation (a = 0.05). These diagnostic results collectively
validate the model's adequacy for characterizing Iraq's cereal production dynamics, as all assumptions of white noise
residuals are satisfied.
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Figure7: Standard residuals of ACF and PACF for ARIMA (0,1,1) model
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Figure 8. Daubechies2 wavelet with Rigorous SURE threshold at level 5 and soft rules for the cereal yields data
4.3. Enhancing the ARIMA model with the use of a wavelet filter for the cereal yields data

Following the ARIMA model selection for cereal yield data, wavelet denoising was applied to reduce noise
contamination in the time series. MATLAB facilitated wavelet analysis using Haar, Daubechies, and Coiflets filters,
coupled with the Rigorous SURE Threshold (RST) method under soft thresholding. The denoised series was then
reconstructed for ARIMA forecasting. Figure 8 illustrates the Daubechies-2 wavelet filter implementation with RST and
the soft threshold rule. This hybrid approach enhances signal clarity by suppressing high-frequency noise while
preserving structural patterns, thus improving forecast reliability.

The time series data were transformed into the frequency domain and processed with wavelet filters of varying
orders and threshold levels, employing both hard and soft thresholding approaches. In most cases, the filtering
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preserved the original observations, resulting in statistically equivalent model performance. However, a subset of
configurations yielded below-ideal performance results compared to the unfiltered data. Notably, a single configuration
Daubechies-2 wavelet decomposition at level 5 with a Rigorous SURE threshold (RST) under a soft thresholding rule
demonstrated statistical improvement. For this optimal case, the ARIMA (0,1,1) model fitted to filtered data showed
enhanced performance metrics: the Akaike Information Criterion AIC decreased from (26.943) to (26.790), while the
Root Mean Square Error RMSE reduced from (696931) to (645569). These improvements indicate superior predictive
accuracy relative to the classical model. Table 4 presents a comparative analysis of the original and filtered models'
statistical criteria, specifically highlighting the efficacy of the second-order Daubechies wavelet with RST under soft
thresholding at level 5. This finding suggests that the selective application of wavelet denoising can enhance ARIMA
model performance. However, the effect is highly dependent on the specific filter configuration and thresholding
parameters. The results highlight the importance of methodical parameter selection in wavelet-based preprocessing for
time series analysis.

Table 4: The criteria values of the original ARIMA (0,1,1) model and filtered model

Model RMSE AIC
ARIMA (0,1,1) Original 696931  26.943
ARIMA (0,1,1) Using RST

645569 26.790
Daubechies 2-Soft

4.4. Forecasting using a wavelet — ARIMA model

Table 5. shows the forecast values till 2025 with their lower and upper confidence interval.

Table 5. Forecast values using the Wavelet - ARIMA (0,1,1) model

Lower Upper

True .. ..

Year Value Forecast Limit Limit
95% 95%

2019 5934964 4034420 2467620 6596060
2020 2901824 4034420 2418600 6729750
2021 5302192 4034420 2372350 6860960

2022 3421743 4034420 2328560 6989980

2023 4034420 2286970 7117080
2024 4034420 2247380 7242460
2025 4034420 2074670 7843810

Table 5 presents projected cereal yields for Iraq (2019-2025) using the ARIMA (0,1,1) model, validated against
observed values (2019-2022). The 2019 prediction (4034420 metric tons) closely approximates the actual yield (5934964
tons), with all observed values falling within a 95% confidence interval. This alignment confirms the hybrid wavelet-
ARIMA (0,1,1) models suitability for Iraqi cereal production forecasting. Projections indicate an average annual output
of (4034420 tons) during 2019-2025. The model’s robustness is evidenced by its consistent performance across both
historical and prediction periods, suggesting reliability for medium-term agricultural planning.
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5. Conclusions and Recommendations

5.1. Conclusions

The study concludes that:

1.
2.

The optimal model for forecasting Iraq's annual cereal yields is ARIMA(0,1,1).

Wavelet-enhanced ARIMA (0,1,1) using Daubechies-2 with Rigorous SURE Threshold (RST) based on soft
thresholding rule significantly improves forecast accuracy.

Projected cereal production (2019-2025) averages (4034420 metric tons) annually, demonstrating the model's
robustness for agricultural planning.

5.2. Recommendations

Implement forecast-strategic policies to enhance cereal yield sustainability and food security.
Maintain model accuracy through periodic updates with recent observational data.

Conduct a comparative employing alternative methods (e.g., artificial neural networks, ANN) to validate and
improve forecasting reliability.

Adding simulations in future studies to test the model's performance with artificial data, ensuring reliability before
real-world use.
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