
 

 

 
https://doi.org/10.65542/djei.22 

Dasinya Journal for Engineering and Informatics. 2026, 2, 7. 

 

Received: November 29, 2025; Revised: January 20, 2026; Accepted: January 21, 2026; Published: January 31, 2026; Available online: January 31, 2026. 

Copyright: © 2026 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). 

Article 

Future Projections of Iraq's Cereal Yields Using Wavelet-Arima 

Model 

Qais Mustafa Abdulqader 1, * , Nawroz Mikaeel Ahmed 2  

1 Petroleum Geologist Department, Technical College of Zakho, Duhok Polytechnic University, Zakho, Iraq; 

qais.mustafa@dpu.edu.krd 
2 Statistics Department, University of Duhok, Duhok, Iraq; anawroz83@gmail.com 

* Correspondence: qais.mustafa@dpu.edu.krd 

Abstract 

This study presents an enhanced forecasting methodology for Iraq`s cereal production by 

integrating wavelet denoising with ARIMA modeling. Using annual production data (58 

observations from 1961-2018), we demonstrate that preprocessing with the Daubechies 

wavelet of order 2 and soft thresholding significantly improves forecast accuracy by 

isolating noise while preserving trends. Our proposed wavelet-ARIMA hybrid model 

outperforms classical ARIMA across some statistical criteria (RMSE and AIC), achieving 

an increase in predictive precision through optimized signal decomposition. Empirical 

results reveal that wavelet analysis constructs latent patterns in fluctuating agricultural 

data that traditional methods overlook, enabling more reliable long-term projections. 

Based on this framework, Iraq`s cereal yields are forecasted to stabilize approximately at 

4.03 million metric tons annually for the years 2019-2025, with a narrower confidence 

interval than ARIMA alone. These results provide mainly two important contributions. 

Firstly, a procedure that was validated for denoising of non-stationary agricultural time 

series, which is often affected by random noise. Secondly, it brings useful 

recommendations for decision-makers to mitigate the risks that are related to food 

security, especially in dry climate areas. The adaptability of the proposed method 

indicates that it can also be applicable to other product forecasting, where the volatility in 

data makes traditional techniques less effective. 
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1. Introduction 

Agricultural production in Iraq remains one of the major parts of the national economy, offering employment and 

food sources for a large part of the population. As reported by the International Food and Agriculture Organization 

(FAO), the main cereal crops grown in Iraq are wheat, barley, rice, and other grains. The country’s agriculture mostly 

depends on cereal crops to maintain both food availability and macroeconomic stability. However, Iraq has experienced 

difficulties in sustaining and raising cereal production due to various factors, including water scarcity, increasing soil 

salinity, and periods of political instability. Despite such challenges, significant progress has achieved by introducing 

modern farming methods, improving agricultural technologies, and adapting a high-yield variety of crops[1]. These 

developments have contributed to keeping the food supply and supporting rural livelihoods.  

Several earlier studies have attempted to forecast agricultural production in Iraq using different methods. In 2016, 

one study was conducted to analyze the impacts of climate change time-series data on Iraq’s agriculture sector, 

including pattern changes in rainfall and temperature. The research highlighted the importance of adaptation strategies 

to reduce the negative effects of climate change on crop productivity[2]. In the following year, a study applied the 
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ARIMA model to forecast the wheat production in Iraq for 2017. The model achieved acceptable results in estimating 

yield under several market conditions [3]. In 2018, researchers used a grouped method for predicting cotton production 

depending on climate conditions, and the model performed effectively under different weather variations[4]. In the 

same year, the Box -Jenkins approach was employed to estimate Iraq’s food production and the existing gap. The 

selected models were ARIMA (1,0,1) for the gap and ARIMA (4,1,3) for production data. Although production was 

increased, the food gap remained by 2025, which required continuing imports due to unmet demand[5].   

Later studies emphasized the state support and introduction of modern agricultural technologies to boost cereal 

production and improve the food security situation in the country[6]. In 2020, the water footprint method was applied 

to examine cereal crops (wheat, rice, barley, and maize), showing that the import policy saved nearly 2,676 Mm³ water 

yearly and recommending more water-saving farming practices[7]. In the same year, another research was carried out 

using the data from 1988 up to 2018, where  the ARIMA (1,0,1) model was used for forecasting wheat production in 

Iraq. The results showed that this strategy is effective for agricultural time series forecasts, and it predicted about 0.94% 

yearly increase in wheat yield till the year 2028[8]. Another study that was done in 2023 investigated the food gap in 

Iraq from 2003 to 2020. It revealed that the country’s major crops faced a deficit ranging between 48% and 100%, mostly 

due to improper policies, insufficient water availability, and the problem of national security. The conclusion of that 

study stated that economic restructuring is urgent and food security is at high risk[9]. Then, in 2024, other researchers 

developed a hybrid ARIMA-ML model to forecast the wheat production between 2024 and 2033 in Iraq. The results 

proved that the hybrid model gave more accurate predictions than traditional ARIMA, especially for nonlinear time- 

series data when evaluated using RMSE[10]. At a similar time, another study applied the ARIMA (0,1,1) model to predict 

the average annual cereal production for the upcoming three years. The findings confirmed that the ARIMA method 

has strong potential for agriculture policy decision-making[11]. Another study in 2024 applied ARIMA models to assess 

Iraq's barley self-sufficiency and food gap from 1990-2022. The best-fitting models, ARIMA (5,0,1) for self-sufficiency 

and ARIMA (8,0,8) for the food gap, both indicate a persistent domestic production deficit that requires targeted 

agricultural policies[12].  

In very recent year specially in 2025, the authors used ARIMA modeling to forecast barley production in Iraqi 

Kurdistan. After stabilizing non-stationary data from 1981 to 2023, the ARIMA (1,2,1) model was selected. The forecasts 

for 2024-2030 predict a declining trend, highlighting a need for policy intervention[13]. Furthermore, in the most recent 

study in 2025, the ARIMA (1,1,1) model was used for the prediction of rice production in Iraq until 2027. This analysis 

underlined the existing uncertainty due to external factors and recommended using more improved models and 

sustainable approaches for achieving food safety [14]. In the same year, the researchers forecasted global barley 

production for 2025-2035 using country-level ARIMA models. The results show a geographic shift, with production 

shares rising in countries like Turkey, Russia, and Australia, while declining in traditional producers like the US, 

Germany, and Canada. This analysis underlined the existing uncertainty due to external factors and recommended 

using more improved models and sustainable approaches for achieving food safety[14].  

This study is driven by the urgent need of more precise forecast of cereal production in Iraq, as a support for future 

food security strategies. Also, it comes due to the current limitation of ARIMA models in dealing with non-stationary 

data, which is very common in agricultural time series. In addition, the wavelet decomposition technique is proposed 

as it can enhance prediction accuracy and still keep interpretability. The study's remaining sections are arranged as 

follows. The study's methodology will be covered in sections 2 and 3. The actual data will be subjected to the Box-

Jenkins methodology and wavelet analysis in Section 4. Section 5 will end with a few conclusions as well as 

recommendations. 

2. Box-Jenkins Method 

The Box-Jenkins technique is a systematic strategy for selecting, fitting, and  validating autoregressive integrated 

moving average (ARIMA) models for time series data. This method consists of three main stages: identification, 

estimation, testing, and application [15]   [16]. 
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2.1. Stages of Box-Jenkins Methodology 

2.1.1. Identification 

The Box-Jenkins approach initiates with data preparation, involving cleaning data from outliers, transformations 

to stabilize variance, and differencing to achieve stationarity in mean, or both if required. Subsequently, an optimal time 

series model is identified by specifying the autoregressive order(p), differencing degree(d), and moving average 

order(q). The key diagnostic tools for model selection include the autocorrelation function (ACF) and partial 

autocorrelation function (PACF).  The autoregressive integrated moving average model, denoted as ARIMA(p,d,q), 

provides a structured framework for this analysis. This systematic process ensures robust time series forecasting[17], 

 

∅(𝛽) (1 − 𝛽)𝑑  𝑌𝑡 =  𝜃(𝛽) 𝜀𝑡         (1) 

Here, Yt is observed time series data at time t, 𝛽 is the backshift operator (𝛽 Yt = Yt−1), both ϕ(B) and θ(B) represent 

the autoregressive AR and moving average MA operators, respectively, εt is a white noise error term at time t,[15]. 

2.1.2. Estimation and Testing 

Following model identification, the parameter estimation phase commences. The procedure employs either least 

squares estimation (LSE) or maximum likelihood estimation (MLE) as primary techniques. Subsequently, the ARIMA 

model`s mathematical formulation is derived, representing the time series structure through its characteristic AR and 

MA components.   

 
𝑌𝑡 = 𝐶 + ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞            (2) 

Here: 𝑐 is a constant term, ∅  and 𝜃 are unknown parameters, the p and q terms represent the lagged values of AR 

and MA, respectively, and 𝜀𝑡 represents the error term. The best model will be selected depending on suitable criteria 

such as the Root Mean Square Error RMSE, and Akaike`s Information criterion AIC [15],[18]. After parameter 

estimation, the model must be checked to guarantee that its residuals are white noise. This includes checking the 

residuals' ACF and PACF plots and doing the Ljung-Box Q test to ensure there is no substantial autocorrelation left [19], 

[20], [21]. 

2.1.3. Application 

The forecasting phase generates future values. This includes point estimates and confidence intervals using the 

validated model. The final stage applies the derived time series patterns to produce statistically sound predictions. 

Rigorous validation and evaluation of forecasts are critical to ensure model reliability and practical utility. Ultimately, 

this process transforms analytical insights into actionable projections while maintaining statistical robustness [22]. 

3. Wavelet Analysis Method 

Wavelet analyses have become an essential tool for simultaneously examining signals in both time and frequency 

domains, offering valuable multidimensional insights [23]. Wavelet analysis overcomes Fourier analysis`s key 

limitation by providing localized time-frequency representations, unlike Fourier`s global mapping, which lacks 

frequency-specific-temporal resolution for non-stationary processes. This enables a more precise characterization of 

transient signal features. [24]. According to [25], wavelet analysis is a mathematical technique that transforms time-

domain signals into alternative representations for enhanced processing. This method proves particularly effective for 

non-stationary data characterized by time-varying means and autocorrelations. Given that, most time series data, 

including agricultural datasets, exhibit nonstationary behavior, wavelet transforms have become essential analytical 

tools for such applications.  

Morlet originally formulated wavelets as a family generated through translations and dilations of a signal “mother 

wavelet”. If the x(t) represents a signal, the wavelet transform can be expressed as: 

 

𝛹∗
𝜓(𝑥, 𝑎) = ∫ 𝑥(𝑡). 𝜓𝑏,𝑎

∗ (𝑡)𝑑(𝑡)                                            (3) 

Where: 

 

𝜓∗
𝑏,𝑎

(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
) ; 𝑎, 𝑏 ∈ 𝑅; 𝑎 ≠ 0                          (4) 
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When substituting this description in equation (3) gives the definition of the continuous wavelet transform CWT. 

  

𝐶𝑊𝑇𝑥
𝜓(𝑏, 𝑎) =

1

√𝑎
∫ 𝑥(𝑡). 𝜓 (

𝑡 − 𝑏

𝑎
) 𝑑(𝑡)                            (5) 

 

The degree of compression is measured by the parameter " 𝑎" often known as the scaling parameter or scale 

(dilation). The translation parameter (shift), denoted by " 𝑏," establishes the wavelet's time frame location. The wavelet 

in " 𝑎 " is a compressed form of the mother wavelet 𝜓(𝑡) (reduced support in the time domain) and mostly corresponds 

to higher frequencies if ⌊𝑎⌋ < 1. 𝜓𝑎,𝑏(𝑡) correlates to lower frequencies and has a wider time width than 𝜓(𝑡) when ⌊𝑎⌋ >

1. The effectiveness of Morlet wavelets in signal processing and time-frequency analysis stems from their frequency-

adaptive time widths, which enable precise localization of signal features across varying temporal and spectral scales. 

The wavelet transform is implemented using a multiresolution pyramidal decomposition approach. By applying 

a pair of complementary filters, a high-pass filter (HiF-D) and a low-pass filter (LoF-D), a recorded digital time signal 

𝑆(𝑛)  can be decomposed into its detailed 𝑐𝐷1(𝑛) and approximation 𝑐𝐴1(𝑛) components, respectively. Analogous to 

the discrete Fourier transformation in spectral analysis, the discrete wavelet transformation (DWT) serves as the 

foundational tool for wavelet-based time series analysis [26]. For discrete-time applications, the discrete wavelet 

transform (DWT) is used. This transform is grounded in sub-band coding, enabling efficient computation of wavelet 

transforms. This method is computationally economical, requiring minimal resources and reduced processing time. For 

a given real-world dataset {𝑌𝑗}, dynamic decomposition can be performed by defining the scale parameter "𝑎" as 2−𝑗 

and the translation parameter "𝑏" as 𝐾. 2−𝑗 , where 𝑗, 𝑘 ∈ 𝑍. Under this framework, a discrete wavelet function can be 

mathematically expressed as follows: 

 

𝜓𝑗,𝑘(𝑡) =
1

2𝑗
𝜓 (

1 − 𝐾2𝑗

2𝑗
)       (6) 

3.1. Combined Wavelet-Arima Model 

Since ARIMA models require stationary input data, noise in time series significantly degrades forecasting accuracy 

[27]. To address this limitation, a wavelet-based denoising framework is proposed. The selection of decomposition 

levels is critical, as it directly influences model performance in wavelet space [28]. The following steps outline the 

wavelet-enhanced ARIMA methodology [29]:  

1. Decomposition: The observed time series is transformed into wavelet space using (𝐷𝑊𝑇). 

2. Thresholding: Wavelet coefficients are modified via a selected shrinkage function and threshold criterion. 

Coefficients below the threshold are either reduced or zeroed to suppress noise.  

3. Reconstruction: The denoised coefficients are inverted via inverse (𝐷𝑊𝑇)   (𝐼𝐷𝑊𝑇), yielding a smoothed signal 

with minimized noise. 

4. Modeling: The ARIMA model is applied to the refined data. 

Figure 1, summarizes this hybrid denoising and modeling framework. By isolating and filtering high-frequency 

noise, wavelet preprocessing enhances ARIMA`s robustness to non-stationarity while preserving structural patterns. 

 

Figure 1. Building ARIMA model using wavelet denoising 
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3.2. Combined Wavelet-Arima Model 

The wavelet transform possesses a decorrelation property, such that coefficients across different levels exhibit 

minimal to no correlation. This occurs because the transformation from the original series to wavelet coefficients to each 

level effectively functions as a pass-band filter (Wavelet Threshold Estimators for Data with Correlated Noise ( PDFDrive ), 

n.d.) Consequently, a distinct threshold 𝜆𝑗 must be established for each decomposition level j. Various thresholding 

strategies exist, including the Rigorous SURE, Minimax, and Universal approaches. This study employs the Rigorous 

SURE threshold (RST), also known as SURE shrink, which utilizes Stein's Unbiased Risk Estimate criterion to derive a 

statistically unbiased threshold. The (RST) algorithm optimizes threshold selection by minimizing the estimated risk, 

making it suitable for noise reduction in wavelet-based signal processing  [31]. 

3.3. Hard and Soft Thresholding 

Wavelet coefficients at level j are subjected to either hard or soft thresholding after threshold estimation. Hard 

thresholding follows a "keep or kill" principle: Coefficients below the threshold are set to zero while others remain 

unchanged. In contrast, soft thresholding shrinks all nonzero coefficients toward zero, yielding a smoother denoised 

[32]. Empirical evidence demonstrated that soft thresholding achieves lower variance compared to hard thresholding 

[33]. Consequently, this study exclusively uses soft thresholding to optimize the ARIMA model`s performance on the 

dataset. The approach enhances noise reduction while preserving essential signal characteristics, which improves 

forecasting accuracy. 

3.4. Using Wavelet Families 

Various wavelet families (e.g., Haar, Daubechies, Coiflets) are applicable for denoising. This study employs the 

Daubechies wavelet. This is an extension of the Haar wavelet with multiresolution levels, selected for its advantageous 

properties: smoothness, orthogonality, vanishing moments, and compact support. These features enable effective 

pattern extraction and noise reduction in annual cereal data, ensuring robust analysis [34]. 

4. Application on Real Data 

The study analyzes annual cereal yield data from Iraq (1961-2018), comprising (58) observations as shown in 

figure2. The dataset retains actual values for 2019-2022 to validate forecast accuracy through comparison with predicted 

values. Source data were obtained from the United Nations Database (Metadata-Countries, World Bank). This temporal 

division enables robust model evaluation while maintaining sufficient observations for statistical significance. 

 

Figure 2. Annual time series for cereal yields in Iraq 

Figure 2 reveals non-stationary characteristics in Iraq`s cereal production time series, exhibiting both oscillatory 

behavior and a consistent upward trend. Initial production of (1847205) tons in 1961 rose sharply to (2332325) tons in 

1962, ultimately reaching (4290625) tons in 2018. The ACF as shown in Figure 3 demonstrates gradually decaying 

autocorrelation coefficients, while the PACF as presented in Figure 4 shows an abrupt cutoff after two significant lags, 

both indicative of non-stationarity. This is further confirmed by the Ljung-Box Portmanteau test (Q = 154.694, 𝑝 < 0.01 

at 19 lags), demonstrating highly significant autocorrelation. These diagnostic results collectively suggest the need for 

differencing to achieve stationarity before modeling. 
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Figure 3. ACF of annual cereal yields in Iraq 

 

Figure 4. PACF of annual cereal yields in Iraq 

4.1. Stationarity test for the time-series data 

The stationarity of time series data is evaluated using the augmented Dicky-Fuller (ADF) test, complemented by 

ACF/PACF analysis [35]. The test examines two hypotheses: 

Ho: The series contains a unit root (non-stationary) 

H1: The series lacks a unit root (stationary)                                   

The ADF stationary patterns test findings are displayed in Table 1. 

Table 1. Findings of the ADF test  

 

 

 

 

 

 

 

The ADF test results as presented in Table 1 indicate non-stationarity in cereal production data (test statistic = -

2.872, p = 0.223 at α = 0.05). The first differencing achieved stationarity (test statistic = -4.951, p = 0.01). Preliminary 

Levene`s test revealed significant variance non-stationarity (L = 13.169, p = 0.001), requiring logarithmic transformation 

before differencing. Post-transformation ACF/PACF examination confirmed that first differencing is still required to 

stabilize the mean.  

Figures 5-6 present the transformed series and corresponding correlogram after these preprocessing steps. This 

two-stage stabilization approach, logarithmic transformation for variance stabilization followed by differencing for 

mean stabilization, aligns with standard time series preprocessing protocols when handling multiplicative non-

stationarity. The final transformed series demonstrates characteristics suitable for subsequent ARIMA modeling, with 

both variance and mean fluctuations now appropriately controlled. The methodological validity in addressing both 

variance and mean non-stationarity ensures more reliable parameter estimation and forecasting performance. 

Significant Level   Alpha = 0.05 

Time Series ADF After the First Difference 

Cereal 

Production Data 
-2.872 -4.951 

P-Value 0.223 0.010 
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Figure 5. The transformed series  

 

Figure 6. ACF and PACF of log of data after 1st differencing  

4.2. Building an ARIMA Model 

4.2.1. Model Identification Stage: 

Following stationarity confirmation and analysis of ACF/PACF patterns as presented in Figure 5, multiple 

candidate models were evaluated. After testing various ARIMA model specifications, ARIMA (0,1,1) emerged as the 

best fit. It consistently delivered the lowest AIC and RMSE values, meaning it was not only simpler but also more 

accurate in its predictions compared to alternatives like ARIMA (1,1,1) and (1,1,0). This balance of simplicity and 

precision led us to select it for the final analysis. In other words, the ARIMA (0,1,1) specification demonstrated superior 

performance, exhibiting lowest RMSE (696931) and AIC (26.943) values among competing models as shown in Table 2. 

These selection criteria confirm its optimal balance of model simplicity and predictive accuracy for the analyzed time 

series. 

Table 2. The chosen model relied on statistical criteria with the lowest values 

 

 

 

 

 

 

 

4.2.2. Model Estimation Stage: 

The ARIMA (0,1,1) model was selected based on ACF/PACF analysis and statistical criteria. As presented in Table 

3, its moving average (MA) parameter is statistically significant (p<0.05), confirming the model`s robustness for the 

stationary time series. 

Criteria 
Model 

AIC RMSE 

26.943 696931 ARIMA (0,1,1) 

27.001 704717 ARIMA (1,1,1) 

26.956 701264 ARIMA (1,1,0) 
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Table 3. Results of estimating the best model  

 

 

 

 

4.2.3. Model diagnosis Stage: 

Figure 7 demonstrates that the standardized residuals of the ARIMA (0,1,1) model exhibit random dispersion 

around zero, with ACF/PACF values statistically dominant within 95% confidence bounds. The Ljung-Box test (Q 

=12.515, p = 0.820) confirms no significant residual autocorrelation (α = 0.05). These diagnostic results collectively 

validate the model`s adequacy for characterizing Iraq`s cereal production dynamics, as all assumptions of white noise 

residuals are satisfied. 

 

Figure7: Standard residuals of ACF and PACF for ARIMA (0,1,1) model 

 

Figure 8. Daubechies2 wavelet with Rigorous SURE threshold at level 5 and soft rules for the cereal yields data 

4.3. Enhancing the ARIMA model with the use of a wavelet filter for the cereal yields data 

Following the ARIMA model selection for cereal yield data, wavelet denoising was applied to reduce noise 

contamination in the time series. MATLAB facilitated wavelet analysis using Haar, Daubechies, and Coiflets filters, 

coupled with the Rigorous SURE Threshold (RST) method under soft thresholding. The denoised series was then 

reconstructed for ARIMA forecasting. Figure 8 illustrates the Daubechies-2 wavelet filter implementation with RST and 

the soft threshold rule. This hybrid approach enhances signal clarity by suppressing high-frequency noise while 

preserving structural patterns, thus improving forecast reliability. 

The time series data were transformed into the frequency domain and processed with wavelet filters of varying 

orders and threshold levels, employing both hard and soft thresholding approaches. In most cases, the filtering 

P-Value T-Value 
Standard 

Error S.E. 
Parameter The Ideal Model 

0.000 7.940 0.092 MA = 0.729 ARIMA (0,1,1) 
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preserved the original observations, resulting in statistically equivalent model performance. However, a subset of 

configurations yielded below-ideal performance results compared to the unfiltered data. Notably, a single configuration 

Daubechies-2 wavelet decomposition at level 5 with a Rigorous SURE threshold (RST) under a soft thresholding rule 

demonstrated statistical improvement. For this optimal case, the ARIMA (0,1,1) model fitted to filtered data showed 

enhanced performance metrics: the Akaike Information Criterion AIC decreased from (26.943) to (26.790), while the 

Root Mean Square Error RMSE reduced from (696931) to (645569). These improvements indicate superior predictive 

accuracy relative to the classical model. Table 4 presents a comparative analysis of the original and filtered models' 

statistical criteria, specifically highlighting the efficacy of the second-order Daubechies wavelet with RST under soft 

thresholding at level 5. This finding suggests that the selective application of wavelet denoising can enhance ARIMA 

model performance. However, the effect is highly dependent on the specific filter configuration and thresholding 

parameters. The results highlight the importance of methodical parameter selection in wavelet-based preprocessing for 

time series analysis. 

Table 4: The criteria values of the original ARIMA (0,1,1) model and filtered model 

AIC RMSE Model 

26.943 696931 ARIMA (0,1,1) Original 

26.790 645569 
ARIMA (0,1,1) Using RST 

Daubechies 2-Soft 

4.4. Forecasting using a wavelet – ARIMA model 

Table 5. shows the forecast values till 2025 with their lower and upper confidence interval. 

Table 5. Forecast values using the Wavelet - ARIMA (0,1,1) model 

 

 

 

 

 

 

 

 

Table 5 presents projected cereal yields for Iraq (2019-2025) using the ARIMA (0,1,1) model, validated against 

observed values (2019-2022). The 2019 prediction (4034420 metric tons) closely approximates the actual yield (5934964 

tons), with all observed values falling within a 95% confidence interval. This alignment confirms the hybrid wavelet-

ARIMA (0,1,1) model`s suitability for Iraqi cereal production forecasting. Projections indicate an average annual output 

of (4034420 tons) during 2019-2025. The model`s robustness is evidenced by its consistent performance across both 

historical and prediction periods, suggesting reliability for medium-term agricultural planning. 

  

Year 
True 

Value 
Forecast 

Lower 

Limit 

95% 

Upper 

Limit 

95% 

2019 5934964 4034420 2467620 6596060 

2020 2901824 4034420 2418600 6729750 

2021 5302192 4034420 2372350 6860960 

2022 3421743 4034420 2328560 6989980 

2023  4034420 2286970 7117080 

2024  4034420 2247380 7242460 

2025  4034420 2074670 7843810 
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5. Conclusions and Recommendations 

5.1. Conclusions 

The study concludes that: 

1. The optimal model for forecasting Iraq`s annual cereal yields is ARIMA(0,1,1). 

2. Wavelet-enhanced ARIMA (0,1,1) using Daubechies-2 with Rigorous SURE Threshold (RST) based on soft 

thresholding rule significantly improves forecast accuracy.  

3. Projected cereal production (2019-2025) averages (4034420 metric tons) annually, demonstrating the model`s 

robustness for agricultural planning. 

5.2. Recommendations 

1. Implement forecast-strategic policies to enhance cereal yield sustainability and food security. 

2. Maintain model accuracy through periodic updates with recent observational data. 

3. Conduct a comparative employing alternative methods (e.g., artificial neural networks, ANN) to validate and 

improve forecasting reliability. 

4. Adding simulations in future studies to test the model`s performance with artificial data, ensuring reliability before 

real-world use. 
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