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Abstract 

Skin cancer is a prevalent form of cancer caused by the abnormal growth of skin cells, 

most commonly resulting from exposure to ultraviolet radiation. Early detection is 

essential for improving clinical outcomes, highlighting the need for advanced and reliable 

diagnostic approaches. Traditional diagnostic methods often face significant challenges 

due to high variability arising from the subjective nature of assessments and their reliance 

on specialists, whose performance is constrained by conventional techniques such as 

dermoscopy and histopathology. Recent advancements in deep learning have 

significantly transformed the field of dermatology by enabling automated and reliable 

skin lesion classification. This study presents an in-depth review of state-of-the-art deep 

learning techniques, including convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), transfer learning, and generative adversarial networks (GANs). In 

addition, the study examines the application of vision transformers (ViTs), which have 

demonstrated strong capabilities in capturing comprehensive contextual information in 

skin lesion analysis. Furthermore, this review explores the integration of explainable 

artificial intelligence (XAI) as well as hybrid and collaborative strategies to enhance model 

interpretability and reliability. Therefore, this review aims to establish a solid foundation 

for future research in the automated classification of skin cancer. 

Keywords: Deep learning; skin lesions classification; convolutional neural networks; 

transfer learning; explainable AI. 

1. Introduction 

 The skin, the largest organ of the human body, serves as a crucial barrier against infections, thermal damage, and 

ultraviolet radiation. Despite these protective functions, cancer remains a profound threat to human health. Among the 

diverse forms of cancer that can develop, skin cancer stands out as one of the most aggressive and rapidly proliferating 

malignancies[1]. A significant number of skin cancers originate in the outer layer of the skin. Skin cancer arises when 

skin cells multiply and spread without regulation. Typically, new skin cells are produced to replace old or damaged 

ones [2]. However, when this process malfunctions, cells can proliferate rapidly and chaotically. These cells are referred 

to as a tumor because they form a cluster of tissue. Various factors can contribute to this condition, including alcohol 

consumption, tobacco use, allergic reactions, viral infections, environmental changes, and exposure to ultraviolet (UV) 

radiation. Millions of new cases of skin cancer are discovered worldwide each year, with melanoma being the most 

common type. Improving patient survival rates requires early diagnosis of malignant skin lesions. However, traditional  
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techniques such as tissue examination and skin examination which are often used in clinical practice have been relied 

upon for diagnosis. Although these techniques are useful, they require highly skilled professionals and are often 

interpreted subjectively, which may vary diagnostic accuracy [3]. Especially in the detection of malignant melanomas, 

where timely treatment is crucial to a patient's prognosis, this intrinsic subjectivity can contribute to diagnostic 

variability and, in some cases, delayed diagnosis or misdiagnosis [4], [5]. Therefore, there are inherent drawbacks to 

traditional skin cancer diagnostic techniques as they are based on specialized knowledge and are subject to change due 

to different interpretations. Furthermore, scaling up diagnostic services to meet the growing demand for skin cancer 

screening globally may be challenging due to the resource-intensive nature of these technologies [6]. The A, B, C, D, E 

rules are guidelines for assessing moles for potential skin cancer, especially melanoma. A (Asymmetry) indicates that 

if you draw a line through the mole and the halves don’t match, it could be concerning. B (Border) refers to irregular, 

jagged, or blurred edges, unlike the smooth borders of normal moles. C (Color) highlights moles with multiple colors 

or shades as potentially problematic. D (Diameter) notes that moles larger than 6 millimeters should be evaluated, 

though smaller ones can also be concerning. E (Evolving) emphasizes monitoring any changes in size, shape, color, or 

symptoms like bleeding or itching [4]. Significant advances in DL and artificial intelligence (AI) have dramatically 

transformed dermatology in recent years. The most advanced technology for identifying skin lesions is CNNs, which 

allow models to automatically learn complex patterns from large image datasets. Khan et al., [7] and Alipour et al. [8] 

have demonstrated remarkable performance in lesion classification, reaching high accuracy rates and significantly 

reducing the subjectivity associated with traditional diagnostic methods. CNNs have been frequently used to deal with 

problems of constrained or imbalanced medical datasets, especially when combined with sophisticated preprocessing 

methods such as data augmentation and transfer. However, the availability of large, well-labeled data sets, which are 

essential for training AI models, is another major hurdle. Often, medical imaging datasets are imbalanced and 

insufficient for robust model training, which limits the effectiveness of automated diagnostic systems learning [9], 

Hasan et al. [10] investigated how deep learning can be used alongside cutting-edge imaging modalities to overcome 

the drawbacks of traditional diagnostic procedures and open the door to more effective and accessible skin cancer 

screening. It also   describes new research approaches and the latest developments in automated and interpretable 

diagnostic systems by addressing special difficulties related to data quality, model interpretability, and clinical 

integration. This distinct viewpoint provides insightful information that advances the topic by adding to the existing 

body of knowledge. Consequently, this work aims to: 

• Synthesize the most recent advancements in computer vision techniques applied to skin cancer diagnosis,  

• Focusing on key methodologies, datasets, and challenges.  

• Analyzing recent developments and recommending strategies to boost the effectiveness, transparency, and 

integration of AI tools in skin cancer detection. 

This review is structured to provide a comprehensive analysis: Section 2 delves into the theoretical foundations, 

covering various skin cancer types and prominent datasets. Section 3 explores state-of-the-art deep learning techniques 

for classification and detection, alongside critical performance metrics. Section 4 addresses the key challenges and 

limitations of applying deep learning to skin infection analysis. Finally, Section 5 concludes with impactful insights and 

forward-looking recommendations to guide future advancements in the field. 

2. Theoretical Background 

2.1 Skin Cancer Types  

Skin cancer types vary based on the initial cell affected and the level of malignancy, with each type displaying 

unique characteristics. It primarily consists of two types: Melanoma and Non-Melanoma. Non-melanoma skin cancers 

are classified into two main types: basal cell carcinoma and squamous cell carcinoma. Both types begin in the epidermis, 

which is the outermost layer of the skin. It's also important to have a clear understanding of the various types of skin 

cancer and work with the right datasets for classification to build accurate and dependable diagnostic models. This 

section discusses the main types of skin [11]. 
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• Basal Cell Carcinoma (BCC): The most common type of skin cancer develops from the basal cells of the epidermis. 

On sun-exposed skin, it usually appears as flat, scaly patches or pearly nodules. While it rarely spreads, leaving it 

untreated can lead to significant damage in the affected area [11] , [12]. 

• Squamous Cell Carcinoma (SCC): It’s the second most common skin cancer, forming in the squamous cells of the 

epidermis. It often appears as a scaly patch, a hard red lump, or a poorly healing ulcer. Early recognition is crucial 

because squamous cell carcinoma can spread if left untreated [13]. 

• Melanoma: Although less common than BCC and SCC, melanoma is the most serious type of skin cancer that 

begins in melanocytes. It often appears as a new or growing mole more than 6 mm in diameter, with uneven 

borders, asymmetry, and a range of colors. Melanoma requires rapid identification and treatment because it can 

spread quickly to other areas of the body [14]. 

2.2 Skin Cancer Datasets 

Skin cancer datasets are vital for advancing research in dermatological diagnostics. These datasets typicallycontain 

annotated medical images of various skin cancer types. These datasets became pivotal in training and testing deep 

learning models for detecting skin diseases. To this end, the ISIC datasets from 2016 up to 2020 contributed towards 

improving the research pertaining to classification and detection of skin lesions. The ISIC 2016 dataset started with 2000 

images from 7 classes focusing primarily on melanoma and other benign skin tumors. With every release, not only has 

the dataset increased the number of images, but also the variety of skin conditions [15] ,[16]. The HAM10000 dataset 

includes 10,000 dermatoscopic samples of pigmented skin lesions from people from different racial backgrounds. The 

PH2 dataset includes 200 dermoscopic images of melanocytic lesions comprising 80 common nevi, 80 atypical nevi, and 

40 melanomas. This collection is of interest for researchers who intend to analyze different strategies of segmentation 

and classification [11]. The DermIS dataset with its 96 samples is applied for teaching AI models for analysis of lesions. 

This dataset serves as a significant compilation of data toward the development and refinement of algorithms with 

complex outlines that require precise detailing for accurate diagnosis [17], [18]. DermQuest is an enlarged dataset of 

1,653 dermatoscopic images tailored to improve machine learning training. Increasing both the quantity and variety of 

images aids in the creation of more dependable diagnostic instruments, especially concerning nevi. [19] The Mpox Skin 

Lesion dataset has 1,428 images which are labeled and important for developing diagnostic models [20]  as shown in 

table 1. 

Table 1. The summary of the popular skin lesions datasets. 

Dataset Name #Images # Classes 

ISIC2016 900 7 

ISIC2017 2000 3 

ISIC2018 10,015 7 

ISIC2019 25,331 8 

ISIC2020 33,126 9 

HAM10000 10,015 7 

DermIS 96 2 

DermQuest 1,653 2 

Mpox Skin Lesion 1,428 2 

PH2 200 3 

3. Deep learning in skin cancer detection and classification 

Change in the identification and classification of medical problems with the use of imaging technologies such as 

dermascopy has proven to be very helpful. DL, for example, has developed an automated procedure for feature 

extraction which enhances precision and constancy in the diagnosis of skin cancer [21] ,[22]. 

3.1 Convolutional Neural Networks and Transfer learning  

The CNNs can scan large amounts of visual data and gradually extract features such as edges, textures, and colors 

from dermatoscope images makes them popular in skin lesion classification. It helps medical imaging in dermatology 
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by automatically recognizing and analyzing hierarchical features in images with an accuracy like that of dermatologists. 

The convolutional and pooling layers required to evaluate dermoscopic images and extract important features such as 

edges and textures in the condensed CNN design are illustrated in Fig.1. The fully connected layers then use these 

features to determine whether a lesion is benign or cancerous [9], [23]  demonstrated how CNNs can be used to improve 

diagnostic accuracy by classifying and segmenting skin lesions from a variety of imaging modalities, such as medical 

ultrasound. significantly enhanced classification performance and showed notable gains in accuracy. The utility of CNN 

frameworks for lesion segmentation and classification was highlighted by [2], especially when using well-known 

datasets such as ISIC and HAM10000. The combination of deep metric learning and attention techniques which focus 

on distinguishing between similar classes and identifying differences within classes is a new development in CNN 

applications.  

 

Figure 1. A Sample of CNN architecture for skin classification. 

Mobile phone-based AI technologies play a crucial role in skin cancer classification by leveraging the accessibility 

and portability of smartphones combined with AI-driven image analysis. These technologies enable early detection by 

capturing high-quality skin images through phone cameras, which are then processed using machine learning models 

to identify cancerous lesions. [24] introduced SkinLesNet, a multi-layer deep CNN to classify three different types of 

skin lesions using smartphone apps.  The PAD-UFES-20-Modified, HAM10000 and ISIC2017 datasets were used to 

train the model. However, although the study emphasizes cutting-edge methods, the complexity of the model may 

make it difficult to apply in real-time clinical settings where interpretability and speed are essential.  In the same 

context, [25]  built a mobile application for self-examination of monkeypox lesions and rash stages. For the classification 

task, the EfficientNet model was used, and produced accuracy rates of 97% for classifying the stage of the rash and 95% 

for identifying the lesion. However, demographic changes may not have considered, including skin color and type, this 

could affect how well the model performed. Similarly, a unique lightweight deep learning architecture suitable for real-

time applications on mobile healthcare systems was presented [26] with a large  scale ShuffleNet architecture for 

classification after applying a novel hashing algorithm based on cumulative moments and entropy-based weighting. It 

performed exceptionally well on the HAM10000 and ISIC2019 datasets. Several machine learning methods were 

investigated [27] and [28] , iincluding supportvector machines (SVM), logistic model and tree approach to depict how 

machine learning can help in early detection and diagnosis of skin cancer by evaluating different models on a custom 

dataset. However, differences in image quality resulting from different imaging devices used in dermatoscopy may 

affect model performance and lead to inconsistent results in different clinical settings.[29] proposed a unique method 

for skin cancer classification, using the Segmentation Anything Model (SAM) for semantic segmentation of skin lesions 

on ISIC2018 and HAM10000 datasets for validation and training after sophisticated preprocessing techniques including 

boosting and normalization. However, class imbalance in the data set can affect study results and lead to models that 

perform poorly on underrepresented groups. Thus, utilizing unbalanced dataset may lead to biased results that favor 

identification of the most prevalent types of lesions. Therefore, researchers in [12], [30], [31],[32], [33] implemented data 

augmentation strategies to solve this issue and enhanced the classification performance. Priyanka et al. [34] investigated 

the use of multispectral autofluorescence lifetime imaging to classify pigmented skin lesions at the pixel level. The 

maFLIM approach enables imaging of skin lesions without labels, helping to distinguish between benign and malignant 

cases. Researchers found that a deep neural network model achieved the highest accuracy, with 76.84% sensitivity and 

78.29% specificity. In determining losses, the function is instrumental for the model towards distinction accuracy for 
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benign and malignant lesions. In the detection accuracy improves and reduces false positives and false negatives, more 

reliable skin cancer classification is achieved. Thus, a loss function was built in  [35] to boost skin lesion recognition in 

deep learning models using domain knowledge. By improving distinguishing skills of varying lesions, MDKLoss is 

further enhancing models' performance. This was implemented in ISIC 2018 and ISIC 2019 datasets, with best accuracy 

of 91.6% and 87.6%, in that order.  

Transfer Learning (TL) enhances model performance with limited data by leveraging other models' pre-trained 

knowledge from vast datasets. The model uses the features it has learned with little data on the new but closely related 

tasks, resulting in requiring less data, while increasing the training, generalization, and speed of the model. Transfer 

learning allows for highly accurate models even in limited-resource settings, making skin lesion classification more 

efficient and scalable [36], [37]. For instance, the pre-trained CNNs have been developed on large datasets such as 

ImageNet and optimized on smaller medical datasets such as HAM10000 and ISIC. The model gets better at a new task 

by using what it learned from a previous one. It fine-tunes itself by adjusting its internal settings (weights), which helps 

it perform the new task more accurately [38]. This method, even with minimal clinical data, accelerates model training 

and enhances performance on skin lesion classification tasks [39].  Profile et al. [40] explored are conducting a 

comparative analysis to evaluate different deep learning models for skin disease classification. The study uses a custom 

dataset to evaluate the performance of models such as CNN and DenseNet. The results show that when it comes to 

identifying different skin disorders, CNN had the best classification accuracy as 91% of the methods tested.  

A combination of the Xception and InceptionV3 architectures was proposed in by [41] for early diagnosis of skin 

lesions. Using data augmentation techniques on the HAM10000 dataset, the study addresses class imbalance and 

achieves high accuracy (98%) on balanced data. When it comes to classifying complex skin lesions, a collective approach 

is superior to individual models. The study helps increase the accuracy of early diagnosis in classifying skin lesions, 

especially for difficult multi-category functions. However, the limited focus of the study on specific types of lesions may 

limit the applicability of the findings to other skin problems. Similarly, [10] utilized DenseNet201 and ResNet52V2 with 

training images achieving 95% accuracy and test images achieving 91% accuracy. ResNet152 was implemented by [42] 

that incorporating data augmentation for lesion diversity. Trained on the ISIC 2018 dataset, the model achieved 87.42% 

specificity. [43] proposed a dual stream deep learning model that integrates local, contextual, and hierarchical 

information to classify skin lesions. The architecture extracts multi-scale features from endoscopic images by integrating 

a custom CNN with modified DenseNet-169. The model outperformed traditional techniques with an accuracy of 93.2% 

after training on the HAM10000 dataset. [7] presented a model combined the features of MobileNet-V2 and DarkNet-

19 with a hybrid firefly optimization method using ISIC2018 dataset, the study's accuracy rate of 89% demonstrated the 

effectiveness of fusion-based DL models for medical image classification. [44] reported the melanoma, SCC, and BCC 

are the three predominant forms of skin cancer based on EfficientNet architecture. The study examines different 

iterations of the EfficientNet model (from B0 to B7) using a custom dataset. With an accuracy rate of 79.69%, the 

EfficientNet-B4 model showed the best performance. Meanwhile, [45] developed a multi-stage, multi-layer CNN-based 

system for identifying and classifying skin lesions, this technique first classifies lesions as benign or malignant and then 

uses transfer learning to classify subcategories more accurately. Using the ISIC2018 dataset for training, the model 

achieved a high classification accuracy of 93.4% for primary classification and 96.2% for subclassification. Comparing 

this multi-stage method with previous CNN-based techniques, the accuracy is significantly improved, and the training 

time is reduced. Metaheuristic techniques can contribute to obtain high performance via its efficiency in selecting 

appropriate features. Therefore, some studies explored the optimization-driven approaches for skin cancer diagnosis, 

highlighting the synergy of deep learning and metaheuristic techniques. For instance, [4]  used MobileNet for feature 

extraction, U-Net for segmentation, and Cat Swarm Optimization (CSO) for hyperparameter tuning, improving 

classification accuracy and demonstrating the potential of optimization strategies for enhancing diagnostic precision. 

Similarly, [16] incorporate a ResUNet in its hybrid form model with Ant Colony Optimization (ACO) for skin lesion 

segmentation, achieving 95.8% accuracy as shown in table 2. 

Table 2. The summary of state of the art based on CNN and transfer learning techniques. 

Ref. Model Datasets #Classes Accuracy% 

[4] ASCDC-CSODL 
ISIC2017 

HAM10000 
3 

92.22 

98.48 



Dasinya Journal for Engineering and Informatics. 2026, 1, 3. 6 of 15 
 

 

[10] 
ResNet52V2, 

DenseNet201 
HAM10000 7 91 

[12] Customized CNN HAM10000 7 97.78 

[16] Hybrid ResUNet ISIC 2018 3 95.8 

[24] 
SkinLesNet (ResNet50 

and VGG16) 

ISIC201, HAM10000, 

PAD-UFES-20 
7,3,2 92 ,90 ,96 

[25] EfficientNet MSLD 4 0.97 

[27] GAN and U-Net ISIC 2020 3 84.5 

[29] 

InceptionV3,DenseNet, 

Xception,VGG16, 

EfficientNetV2 

HAM10000, ISIC 

2018 
7 85.33% 

[30] Federated learning ISIC 2018, PH2 7, 3 98 

[31] DenseNet ISIC 7 88.6 

[32] 
LesNet(DenseNet,VGG-

16,and Inception) 

HAM10000, 

ISIC-2019 
7 

98 

94 

[33] SqueezeNet, ISIC-2019 8 
71.80 

98 

[34] SVM, RF and NN maFLIM 2 78.29 

[35] CNN and MDKLoss ISIC 2018 -2019 7,8 
91.6 

87.6 

[40] ResNet18 ISIC   

[41] Oriented IncepX squad HAM10000 7 98 

[42] ResNet152 HAM10000 7 87.42 

[43] 
Dual-Track based 

DenseNet 
HAM10000 7 93.2 

[44] EfficientNet ISIC 2019 3 79.69 

[45] MMCNN ISIC2018 5 96.2 

 

3.2 Recurrent Neural Networks and Long Short-Term Memory 

 Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks are great for working with 

data where the order really matters. This is different from CNNs, which are good at dealing with images. In 

dermatology, this ability is especially helpful since diagnosing skin issues relies on keeping an eye on how lesions 

change over time. By combining CNNs and LSTMs, these hybrid models take advantage of both spatial and temporal 

data, allowing for a more thorough and accurate analysis. [42] and [46] explained how these hybrid models dramatically 

increase diagnostic accuracy by tracking changes over time as well as capturing static image features. By combining 

clinical and imaging data, these models provide individualized diagnostic insights and are essential for long-term 

monitoring. The utility of RNNs and LSTMs in addressing specific problems such as class imbalance and within-class 

variation has been comprehensively studied in [46],[3],[4], and [47]. These models enhance reliability and minimize 

errors by effectively recognizing intricate lesion patterns and understanding how they evolve over time. In addition, [5] 

showed that a hybrid CNN-RNN model based on ResNet-50 can identify complex skin lesions from large datasets with 

remarkable accuracy. Researchers in [9], [46], [26], and [22], showed that despite the progress, there are still a lot of 

challenges to tackle before RNNs and LSTMs can be really used in the real world. Without proper hardware support, 

getting these models to work in real-time can be tough because they take a lot of computing power for training and 

need large, well-labelled datasets. Furthermore, dispersed diagnosis may be possible using lightweight, mobile-friendly 

models, but a balance must be struck between diagnostic accuracy and computing efficiency as shown in table 3. 
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Table 3. The summary of models based on RNNs and LSTM. 

Ref. Model Datasets #Classes Accuracy% 

     [3] RNN Custom Dataset 5            84.7 

[5] 
(CNN-RNN) based 

ResNet-50 
ISIC 9 94.48 

[9] CNN + LSTM ISIC 2016-2017, PH2 3 89.7 

[26] RNN + lightweightCNN HAM10000,ISIC 2019 2 90.2 

[39] LSTM and TL DermIS, DermQuest 2 
97.9 

97.4 

[46] 
LSTM and Ensemble 

CNNs 
ISIC 2018 7 88.5 

[47] 
Ensemble Model Based 

on LSTM 
Custom Dataset 7 90.5 

[48] Hierarchical LSTM Custom Dataset 3 86.3 

[49] Ensemble RNN ISIC 2020 7 88.9 

[50] RNN and LSTM ISIC 2019 8 84.5 

3.3 Generative Adversarial Networks (GAN) 

Generative Adversarial Networks (GANs) it is a modern class of deep learning models that primarily aims to 

produce synthetic data that closely mimics real data as shown in Fig. 2. And has two main parts as follows: 

• Generator (G): Using random noise inputs, the generator creates synthetic samples. Its goal is to generate data 

identical to real-world data. This suggests the production of realistic dermatoscope images that can be used to 

supplement scarce data sets in the context of skin cancer detection. As the generator gains knowledge from the 

discriminator's feedback, it continually improves its output and delivers better performance in [51], [52], [53]. 

• Discriminator (D): The task of the Discriminator is to evaluate synthetic samples (generated by the generator) and 

real data samples (from the training data set). It produces a probability score that indicates whether the sample is 

authentic or not. In order to help the generator learn how to present more convincing data, the discriminator is 

taught to maximize its accuracy in distinguishing between the two [54], [55]. Two neural networks that make up 

the architecture, are trained simultaneously and competitively to produce a reliable data clustering system [22].  

 

Figure 2. General GAN architecture [51]. 

In dermatology, GANs have been widely used, especially to improve skin cancer detection methods. Among the 

notable applications are firstly data augmentation since GANs may produce synthetic dermatoscopy images, helping 

to alleviate the problem of data scarcity, which is often a major bottleneck in medical imaging. GANs allow deep 

learning models to learn more general features by producing more training samples [53]. Secondly, image enhancement 

because GANs can enhance the quality of existing images and produce new data to increase the accuracy of diagnosis. 

The authors conducted in [17] showed that GANs can successfully improve the accuracy and clarity of a dermoscopy 

image, which will allow CNNs to be trained to classify skin cancer. [52] used a unique GAN design to reduce artifacts 

and improve the clarity of dermoscopy images. Although they were able to extract features more effectively, the 

effectiveness of their method was mostly dependent on the quality and diversity of the training images. In addition, 

[53] showed that using GAN to produce high-resolution synthetic images significantly improved classification accuracy, 

although there was still a risk of overfitting due to insufficient representation of real-world data. The applications of 
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GANs extend to improving image quality as well. [12] and  [55] investigated hybrid models that combine GANs with 

other deep learning methods. GAN-generated data enhanced the training results and complement real-world datasets 

in [18]. However, a critical drawback is that for the images generated to be useful, they must faithfully depict the actual 

data, which can be difficult to do on a regular basis. When taken as a whole, these results demonstrate the revolutionary 

potential of GANs in medical imaging while simultaneously drawing attention to the problems that need to be solved 

to maximize their effectiveness in clinical settings. [56]  presented SCDC-Net, a DL network for TL-based skin cancer 

classification. For better lesion segmentation, the model combines GAN and hybrid U-Net, to address issues such as 

hair artifacts that often affect classification accuracy. The model was able to capture color, texture and statistical 

information using techniques such as discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) 

to extract features on the ISIC-2019 dataset and reached an accuracy of 96% as shown in table 4.  

Table 4. A summary of skin cancer classification models using GANs. 

Ref. Model Dataset          #Classes Accuracy % 

[12] 
Optimized 

CNN 
HAM10000 7 97.78 

[17] Unrolled GAN Dermoscopic images 3 96.60 

[18] CGAN 
Real-world medical 

datasets 
2 95.30 

[51] Vanilla GAN 
Various medical 

datasets 
3 95.93 

[52] WGAN Dermoscopic images 3 96.03 

[53] DCGAN Customized dataset 2 93.5 

[55] 
T-ResNet50 + 

STGAN 
HAM10000 2 98.34 

[56] SCDC-Net ISIC-2019 8 96 

3.4 Vision Transformers (ViTs) 

Vision Transformers (ViTs) leverage attention mechanisms to analyze images differently from CNNs, allowing 

them to capture long-range relationships between pixels. This ability makes them particularly effective in detecting and 

segmenting complex lesions like melanomas, which often have irregular shapes and indistinct boundaries [57]. 

Researchers have also explored hybrid models that integrate CNNs with other architectures, such as RNNs or ViTs, 

leading to even more promising outcomes in medical image analysis. [58] presented a hybrid DL model that 

outperforms traditional CNNs by achieving better segmentation and classification accuracy for skin cancer detection to 

classify skin lesions.  An efficient pseudo-learning-based structural hierarchical representation was presented in [48], 

improving classification accuracy while reducing computational complexity. An overview of the hybrid GAN-CNN 

model workflow is shown in Figure. 3, [39].  

 

Figure 3. The general ViT structure. 
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A method that combining the Segment Anything Model (SAM) and the ViT models for skin cancer segmentation 

and classification was proposed in [59] . It utilized Google's ViT patch-32 model, the model obtained an accuracy of 

96.15% and is highlighted the effectiveness of transformer models. [60] used ViT and presented a DL_based architecture 

on HAM10000 dataset reaching a classification accuracy of 94.7%, the ViT model was better than traditional CNN-based 

methods. [61]  developed ViT-Grad-CAM model for prediction and classification of skin lesions. It provides enhanced 

multi-class classification capabilities. With an accuracy of 97.28%, ViT-Grad-CAM improved detection of malignant 

lesions after training on the HAM10000 dataset.[62] proposed the use of transformer-based DL to capture spatial 

dependencies in image data, the study applies the self-attention mechanism of transformers on a large, combined 

dataset from ISIC 2020 and custom sources. With a test accuracy rate of 86.37%, the model demonstrates that transformer 

networks can handle complex, multi-class skin lesion datasets. [63] created a multimedia educational framework that 

combines patient metadata with dermoscopy image analysis to analyze skin lesions. With up to 99% accuracy, the ViT-

based method leverages data from multiple imaging modalities as shown in table 5.  

Table 5. The ViT-based models.  

Ref. Model Datasets # Class Accuracy% 

[59] ViT & SAM HAM10000 2 96.15 

[60] ViT HAM10000 7 94.7 

[62] DNN and ViT Basis ISIC 2020,2018 7 86.37 

[63] ViT HAM10000 7 99 

3.5 Attention Mechanisms and Explainable AI (XAI) 

 Traditional machine learning models often lack transparency, making it hard to understand their predictions. This 

opacity reduces trust and hinders their adoption and use. Recently, machine-learning systems can explain their 

reasoning, highlight strengths and weaknesses, and predict future behavior. This is achieved by developing explainable 

models and using advanced human-computer interfaces to present clear, useful explanations to users. Explainable 

artificial intelligence (XAI) methods, including gradient-weighted category activation mapping (Grad-CAM), highlight 

the most important image regions to visually explain model predictions [48]. In medical settings, transparency is crucial 

because practitioners must trust and understand how a model makes decisions. XAI helps solve this challenge by 

making DL models less of a "black box" in healthcare  [47]. It enhances physician confidence in AI-based diagnoses by 

increasing the transparency of model predictions [39].  

Attention mechanisms boost DL accuracy and interpretability by helping models focus on key image areas, 

improving lesion classification by identifying important regions in the image [9]. The researcher in [64] investigated 

how Grad-CAM can improve the interpretability of CNNs for skin cancer classification. It proves that providing visual 

explanations for decision making using AI enhances the reliability and confidence of automated systems. This helps 

dermatologists understand why specific diagnostic findings occur. Author was An experiment in [65] has emphasized 

how Grad-CAM can be combined with CNN architectures aiming to address class imbalance, a common problem in 

medical image analysis. It shows how model performance is improved when Grad-CAM is combined with optimization 

algorithms such as Adam and RMSprop which reduces loss while improving classification accuracy. Additionally, it 

has been revealed in [66] that Grad-CAM had the best agreement with dermatologists' evaluations. This enhances the 

promise of Grad-CAM as a useful clinical diagnostic tool. To improve decision-making in skin cancer screening, the 

results support its inclusion in diagnostic procedures. This study demonstrates the utility of visual interpretation 

techniques for matching AI results with expert assessments made by humans. 

 The DeMAL model [50], which takes attention mechanisms into account, is particularly good at resolving 

difficulties in distinguishing between similar lesion types and provides more accurate and reliable classification. 

Clinical adoption is greatly hampered by the inability to interpret deep learning models as they become increasingly 

complex. [67] presented XAI techniques were used to enhance the interpretability and transparency of skin cancer 

detection models and to improve doctors' decision-making ability by producing AI outputs that are easy to understand, 

unlike traditional models that often operate as fuzzy boxes. [6] investigated how to enhance the transparency of deep 

learning models used to diagnose skin cancer by applying XAI techniques. By providing explanations for the model's 

predictions, the study aims to improve the interpretability of AI-based judgments for medical professionals. Moreover, 

it increases clinicians' confidence in AI by providing clear, understandable outputs that enable them to make more 
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informed decisions, where traditional models often lack interpretability. The Grad-CAM applied in [68], [61], [69] have 

enhanced the model transparency and confidence by integrating XAI with deep learning. The work underscores the 

value of Grad-CAM in building clinician confidence in automated diagnostic systems and the importance of 

interpretability in AI-based skin cancer detection by focusing on the most important features as in Figure 4 and table 6. 

Original  Grad-CAM   

Figure 4. The analysis of thermal and visual imaging [70]. 

Table 6.  Outlines XAI in skin cancer classification.  

Ref. Model Datasets #Classess Accuracy%  

[67] XAI 
 

ISIC 
2 92  

[6] CNN & Grad-CAM HAM10000, PH2 2 N/A  

[69] 

ResNet50v2, 

EfficientNetB4, 

DenseNet169 

MSLD v2.0 6 

99.33, 

62.63, 

93.94 

 

[61] 
ViT-GradCAM 

 
HAM10000 7 97.28  

[71] 

 
U-Net, EfficientNet HAM10000 7 82  

[65] 
CNN, Grad-CAM and 

Grad-CAM++ 
HAM10000 7 81.24  

      

[66] 

 
Dl and Grad-CAM++ 

HAM10000, 

MSK, BCN20000, 

Derm7pt 

2 81  

3.6 Hybrid Models and Ensemble Techniques 

 Hybrid models have greatly improved skin lesion classification such as combining  CNNs with classic machine 

learning techniques like support vector machines (SVMs) and k-nearest neighbors (KNN) in [46]. It further enhanced 

by ensemble learning techniques, which combine predictions from several models to improve accuracy and lessen 

overfitting [23]. In the same context, [72] improved feature extraction to overcome issues like low contrast in lesion 

images by employing lightweight attention-guided capsule networks and ResNet50 on the HAM10000 and ISIC 2020 

datasets, it showed an impressive accuracy of 98%, indicating its ability to improve automated diagnosis and overcome 

dataset fluctuations. [73] used an ensemble approach to reduce false positives and increase overall classification 

accuracy while addressing multi-class melanoma detection. The effectiveness of deep learning and clustering methods 

that use different CNN architectures and machine learning algorithms to maximize skin cancer classification has also 

been studied in [74] and [70] which emphasized the importance of model simplicity for clinical integration and the 

functionality of collective methods in achieving high accuracy. The possibility of facilitating the understanding of 

complicated patterns by merging the deep learning models with techniques like radiomics in dermoscopy images has 

been explored by [75] and [76] who were able to achieve an accuracy of 97% and 98.5% respectively. These innovations 

indicate a significant improvement in the non-invasive diagnosis of melanoma and other skin lesions, pushing the limits 

of what hybrid models can achieve in medical imaging as shown in table 7.  
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Table 7. Summary of the hybrid models and ensemble techniques. 

Ref. Model Datasets #Classes Accuracy% 

[70] Max Voting Ensemble 
ISIC 2018, 

HAM10000 
7 95.80 

[72] 

lightweight attention-oriented 

capsule networks with an 

active snake model 

HAM10000, ISIC 

2020 
3 98 

[73] DCNN-MSCCA HAM10000 7 95 

[74] MobileNetV2, InceptionV3 ISIC 2017 3 80.6 

[75] 
Ensemble(VGG16, Inception-

V3, ResNet50) 

ISIC 2018, 

HAM10000 
3and 7 97 

[76] 
Hybrid DL& Radiomics 

Approach 
ISIC 2016-2020 8 98.5 

 

4. Key challenges in deep learning for skin lesion classification 

DL has achieved advancements in skin lesion classification. However, various challenges listed below still may 

limit typical performance.  

 

• The Data Imbalance: rare skin cancer types are often not fully included, making it harder for models to perform 

well on them. 

• Interclass Similarity and Intraclass Variation: skin lesions may look alike across different classes or exhibit 

significant differences within the same class. Employ advanced models with detailed feature extraction to enhance 

differentiation between classes. 

• Image Quality Variation: variation in lighting, dermoscopy equipment, and imaging parameters will significantly 

affect model performance. Standardized imaging protocols and preprocessing procedures can reduce variations in 

image quality. 

• Model Generalizability: models tend to be trained on some datasets, which might not be sufficiently representative 

of all kinds of skin lesions that are encountered in more widespread clinical practice. As such, models must be very 

generalizable to other populations so that they can be applied validly in the clinical setting. 

5. Conclusions 

 Traditional approaches such as dermoscopy and histopathology are subjective and relied on clinical expertise and 

this can lead to inconsistent diagnoses. Recently, DL techniques offered more objective, precise ways that help in 

improving the accuracy and efficiency of classifying skin cancer types especially for early-stage cancers. CNNs and TLs 

play a vital role in this process by examining dermatoscopic images to identify intricate patterns, helping to minimize 

diagnostic mistakes between malignant and benign lesions. RNNs bring a dynamic approach by tracking lesion changes 

over time and improving the early detection of melanoma and other aggressive cancers. To overcome the challenge of 

limited annotated data, the GANs help in generating realistic synthetic images to improve model performance and 

generalizability. Despite these advances, challenges remain, such as the lack of interpretability in DL models. Clinicians 

need clear explanations of how models make decisions, which can be addressed with explainable artificial intelligence 

(XAI). ViTs take a step further to show the more enhanced results by capturing global image context, which enhances 

predictions in complex cases where local features alone aren't enough. Looking ahead, DL's integration into 

telemedicine and mobile healthcare systems holds great promise, improving access to skin cancer detection and 

potentially reducing mortality, especially in underserved regions. By overcoming current challenges, DL can 

revolutionize dermatology, making skin cancer detection faster and more reliable. 
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