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Abstract 

In this work, we utilize the blockchain transactions and financial instruments to predict 

the Bitcoin price using machine learning. We use three models: Light Gradient Boosting 

Machine (LightGBM), Decision Tree Regressor and Random Forest Regressor applied on 

a feature set which includes lagged close prices, 14-day Simple Moving Average (SMA), 

Relative Strength Index (RSI) and daily confirmed Bitcoin transactions. The data is tem-

porally aligned and pre-processed to maintain temporal coherence, as well as for conver-

sational fluency. Through the results assessment by means of RMSE MAE, MAPE and R², 

we can found that Random Forest model has results closer to best performance with val-

ues of: 264.81 (RMSE); 175.41(MAE); for MAPE is 0.27% and R² equals to 0.9958. Our find-

ings also lend strong support for the effectiveness of simultaneously considering not only 

blockchain-specific market variables but also traditional financial predictors towards im-

proved model performance and generalization. Our findings underscore the importance 

of raw blockchain transaction data for predicting cryptocurrency prices, and present a 

new tool for data-based decision making in decentralized finance. 

Keywords: Bitcoin Price Prediction; Blockchain Transaction Data; Machine Learning 

Models; Random Forest Regressor; Technical Indicators 

 

1. Introduction 

Bitcoin's transformation into a unique form of money has also increased its value as compared to traditional com-

modities like consumer goods and fiat money. Bitcoin’s price fluctuates because it takes place on the speculative market. 

Outside of trading and investing, the act of interacting with crypto itself presents risks beyond losing/gaining money, 

such as potential losses from settlement appearing from an interface error or network interruption. These issues can not 

only facilitate, but also emphasize the significance of price forecast in Bitcoin for algorithmic trading, financial analysis 

and risk management [1]. 

While traditional currencies are created by central banks and stocks are issued by commercial banks, the network 

of computers that run the Bitcoin system operate on an as-a-service network. Being the decentralized ledger this ledger 

is maintained and validated by the network and captures and stores all Bitcoin transactions not yet recorded and thereby 

could be considered a treasure trove as a big data information source - as it captures the movement, mood and pulsating 

energy of the Bitcoin-sphere [2]. Classic Predictive systems use a certain amount of statistical quantitative analysis and 

high complicate math formulas to predict a possible price range for a financial instrument. Signs are helpful, but they 

don’t reveal a great deal about the transactional dynamics of the broader ecosystem being played out on the blockchain 

itself. Thus, using transaction data on blockchain as leading indicators in prediction models of future transactions pro-

duction is an efficient way to enhance prediction accuracy [3]. 
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Machine learning (ML) has become increasingly popular in financial time series analysis in recent years. For exam-

ple, supervised learning models have been broadly employed to describe non-linear structure and complex relation-

ships in data [4]. Of these, decision trees, ensemble methods including Random Forest and boosting methods such as 

LightGBM have good predictive performance [5]. Structured data processing, the ability to capture nonlinearities and 

interpretability makes them suitable for use in financial modeling. Nevertheless, there are few comparative studies that 

feature blockchain transaction data in such models [6]. 

This paper seeks to fill this gap by proposing a hybrid feature set that combines traditional technical indicators 

with blockchain transaction metrics such as the number of confirmed transactions per day. We speculate that this com-

posite feature representation is better at representing sequences of driving forces of the Bitcoin price. To this end, we 

use three models from tree-based machine learning: Light Gradient Boosting Machine (lightGBM), decision tree regres-

sor, and random forest regressor, and conduct a backtesting analysis using a dataset that merges history of the Bitcoin 

closing price together with the block-chain transaction-level data. 

We applied the 14-day Simple Moving Average and Relative Strength Index financial indicators in our test, which 

are commonly used in stock technical analysis to monitor trends and overbought or oversold conditions. Besides, we 

engineer lag features in the model in order to retain last low-price points and trends. The inclusion in our analysis of 

behaviour accompanied by blockchain-transaction data also allows us to measure transactions volume and speed of 

settlement, and more often than not it goes first to the price. Then, we describe a certain content selection and model 

introduction process. RMSE, MAE, MAPE and R² are the main evaluation metrics used in our experiments. These indi-

cate the generalization and cross-validation performance of the model.  

Results from experimentation indicate that Random Forest outperforms in all parameter settings the LightGBM 

and decision tree with significant difference. It would appear achievable through fine-grained features of the ensemble 

collection of models to learn and extrapolate to predictable shifts in cryptocurrency values and behavior. And so to 

make a conclusion of my thesis: This paper is one of the growing papers in the field of machine learning and Blockchain 

analysis. However, the prediction indicators are generated by employing the true blockchain transaction data, instead 

of the STP-based market-driven data, for conducting forecast the predictions based on blockchain transaction data pave 

the way for more reliable forecasts for the price of Bitcoin in the future. And not just investors and traders, but also 

researchers and developers who are working to produce smarter financial technology in the first place. 

For an overall view the structure of the remainder of this paper shall be such. Section 2 present related work and 

discusses existing methods for predicting Bitcoin prices by employing either traditional financial indicators or block-

chain features. Section 3 details the methodology consisting of data collection, preprocessing, feature engineering and 

building the model. The experimental results on various metrics of the proposed models are reported and discussed in 

Section 4. Section 5 eventually closes the study by highlighting the main results and practical implications of the findings 

and by proposing avenues for future research. 

2. Related works 

Recent studies have applied machine learning and deep learning models to Bitcoin price prediction using features 

derived from blockchain data. Li and Wu developed a k-order transaction graph model to automatically learn structural 

transaction patterns, achieving improved predictive performance compared to hand-crafted TF-IDF features [7]. Wei et 

al. introduced DLForecast, employing temporal graph embeddings to model evolving Bitcoin account interactions, 

showing enhanced accuracy in short-term forecasting [8]. 

Palaiokrassas et al., in a systematic mapping study found that on-chain predictors like transaction volume, net-

work activity, and fee rates significantly enhance financial prediction models [9]. In a different setting of feature engi-

neering, Cohen and Aiche applied multi-network ensembles with traditional technical indicators which result in high 

returns, stressing the significance of normalization and trend-based generation of features [10]. Similarly, Hafid et al. 

utilized XGBoost including MACD, RSI, Bollinger Bands and other selected indicators for more than 92% directional-

prediction accuracy [11]. 

From an economics modeling point of view, Erfanian et al. a comprehensive list of macro-and micro-economic, 

technical and blockchain variables under the frameworks of SVR and ensemble, concluding that SVR outperformed 

other models in short-and long-term prediction accuracy [12]. Alsini et al. detected buy signals with trees of bags 

learned with indicator-derived feature sets, which resulted on a more reliable decision support system [13]. 
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Investigations by Bistarelli et al. demonstrated the utility of incorporating external factors (such as investor senti-

ment, etc.) with technical indicators for better predictability [14]. An earlier influential study by Madan et al. demon-

strated that hybrid features using social sentiment and network metrics can achieve accuracy over 98% in daily move-

ment prediction [15]. 

Newer models concentrate on features, such as enhancement and noise reduction. Mousa et al. incorporated wave-

let denoising and hashrate-based features with a stacked deep learning architecture, which lowered MAPE down to 

around 0.58% in daily forecasts [16]. For blockchain fraud and behavioral analysis, Elmougy et al. presented a graph-

based financial forensics dataset Elliptic++ with methods that address the issue of transaction-level profile extraction 

[17]. In the end, Sebastião and Godinho compared Random Forest and LSTM for Bitcoin prediction task showing that 

model selection as well as train-test split are important to error in predictions [18]. 

In concert these recent works consolidate several themes: First, on‑chain blockchain related metrics (e.g., transac‑

tion volume, graph structure, hashrate and network activity) are available to help improve prediction accuracy; Second. 

technical indicators such as RSI, MACD, SMA and Bollinger Bands remain strong predictors when combined with ML 

models; and third, careful feature engineering and preprocessing – including graph embeddings, denoising techniques, 

feature selection normalization and time-lag windowing is necessary for model robustness. We extend this literature 

by combining verified transaction amounts with lagged price features and standard technical indicators examined for 

tree-based models, which have a well-defined train-test distinction. 

3. Methodology 

This section describes the overall approach from market and blockchain transaction metrics analysis to forecasting 

Bitcoin price. The methodology consists of data integration, preprocessing and feature engineering selected features 

based on domain-specific indicators, model construction by means of machine learning regressors, and validation 

through standard statistical metrics. Figure 1 illustrate our methodology. 

 

Figure 1. Flowchart for the proposed approach. 

3.1. Data Sources 

This study was based on two different datasets. The first dataset named Bitcoin Historical Data, gives time-

stamped data about the Bitcoin market. Where timestamp is a unix timestamp, close is the price in USD (closing), vol-

ume represents the currency and marketCap refers to market cap. These features are common in financial time series 

analysis and essential to measure the sentiment of the market and capitalization evolution. The second data set: Con-

firmed Transactions, is another blockchain level variable containing daily counts of confirmed_tx which is the number 
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of Bitcoin transactions that have been confirmed on the blockchain. This measure is often treated as a proxy for network 

load and can indicate when levels of user activity are higher or the network is more congested. 

3.2. Timestamp Harmonization and Dataset Merging 

To integrate the two datasets for joint analysis, they were combined using their timestamp columns. The original 

time formats weren't always precisely equal and didn't always have the same precision or possible timezone offsets. 

To align these, timestamps were converted into a shared datetime format and stripped of time-of-day information 

(length discounting for Y-M) so that all datetimes would have daily granularity (YYYY-MM-DD). This operation allows 

the price and transaction data to be matched on a day granularity. The two datasets were merged by an inner join on 

the column of timestamp after normalization. This ensure that only dates found in both sources were kept in order not 

to propagate null values which could then biased the learning. 

Let 𝐷𝑝  represent the date set in the price dataset and 𝐷𝑡  the date set in the transaction dataset. The merged da-

taset 𝐷 is defined as: 

𝐷 =  𝐷𝑝  ∩  𝐷𝑡 = { 𝑡 ∈ 𝐷𝑎𝑡𝑒 | 𝑡 ∈ 𝐷𝑝  ∧  𝑡 ∈ 𝐷𝑡}                               (1) 

This results in a combined dataset that includes: daily close prices, volume, marketCap, and confirmed_tx—all 

synchronized by date. 

3.3. Feature Engineering 

In order to enhance the predictability, some additional features were created from the combined ones. These can 

be lagging indicators, such as moving averages or momentum-based ones that are often seen in financial predictions. 

One important issue while modelling time series is the presence of autocorrelation in the data, the dependency of the 

variable on its past values. Thus, five lags of the close variable were derived, each representing closing prices one to 

five days prior to each observation. Formally, the lagged feature for day 𝑡 with lag 𝑘 is defined as: 

𝐶𝑙𝑜𝑠𝑒𝐿𝑎𝑔𝑒𝑘  (𝑡) = 𝑐𝑙𝑜𝑠𝑒(𝑡 − 𝑘), 𝑘 ∈ {1,2,3,4,5}                   (2) 

These lag features encapsulate short-term historical trends and are particularly useful for tree-based learning algo-

rithms which partition feature space based on value thresholds. In addition to lags, two domain-specific indicators from 

technical analysis were computed: the 14-day Simple Moving Average (SMA) and the 14-day Relative Strength Index 

(RSI). 

The 14-day 𝑆𝑀𝐴 is defined as: 

𝑆𝑀𝐴14(𝑡) =  
1

14
 ∑ 𝑐𝑙𝑜𝑠𝑒(𝑡 − 𝑖)13

𝑖=0                 (3) 

This metric smooths price volatility and captures trend direction, assisting the model in distinguishing between 

bullish and bearish phases. 

The 14-day RSI is a momentum oscillator that quantifies the magnitude of recent price changes. The 𝑅𝑆𝐼 for day 

𝑡 is calculated as: 

𝑅𝑆𝐼14(𝑡) = 100 − (
100

1+𝑅𝑆𝑡
)                                 (4) 

Where 𝑅𝑆𝑡 is the ratio of average gains to average losses over the past 14 days: 

𝑅𝑆𝑡 =
𝐺̅14

𝐿̅14
, 𝑤𝑖𝑡ℎ 𝐺̅14 =

1

14
 ∑ 𝐺𝑡−1

14
𝑖=1 , 𝐿̅14 =

1

14
 ∑ 𝐿𝑡−1

14
𝑖=1                   (5) 

Here, 𝐺𝑡 = max(∆𝑃𝑡 , 0) , 𝐿𝑡 = max(−∆𝑃𝑡 , 0), and ∆𝑃𝑡 = 𝑐𝑙𝑜𝑠𝑒(𝑡) −  𝑐𝑙𝑜𝑠𝑒(𝑡 − 1). 

After all features were constructed, the dataset included the following variables: 

Lag features: close_lag_1 to close_lag_5 

Original features: volume, marketCap, confirmed_tx 

Technical indicators: SMA_14, RSI_14 

Rows containing any missing values, typically introduced by rolling calculations or lag operations, were removed. 

This ensured a clean input matrix for machine learning models. 

The final feature matrix 𝐗 ∈ ℝ𝑛∗𝑚, where 𝑛 is the number of valid observations and 𝑚 = 10 is the number of 

input variables, was used to predict the target variable 𝑦 = 𝑐𝑙𝑜𝑠𝑒(𝑡), the actual Bitcoin closing price on day 𝑡. 

3.4. Model Development and Training 
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Three supervised machine learning models were developed and compared: LightGBM, Decision Tree, and Ran-

dom Forest. Each model was selected based on its ability to handle tabular data, support non-linear relationships, and 

maintain interpretability or ensemble learning advantages. 

LightGBM is a very fast, high-performance gradient boosting framework based on decision trees. It was set with 

200 estimators, a learning rate 0.02, and a maximum depth 8. LightGBM model is built in a forward manner, with each 

new tree attempting to correct the mistakes of previous trees. This is a very fast and efficient method, particularly if the 

data has a large number of cases and/or predictors. Nevertheless, its performance is highly sensitive on hyperparameter 

tuning, and gradient boosting mechanism in the basis of its boosting approach can be overfitted on noisy data. 

The second model, Decision Tree Regressor, was fitted with a maximum depth of 8 aa the depth of 8 was able to 

prevent overfitting better and generalize as well. This model works by learning Decision Rules hierarchy based from 

the input features in order to predict. Being a single-tree model, it is easily interpretable and visualizable and is suitable 

for knowing which of the variables are the most influential on the target price. However, it tends to have large variance 

and lack robustness in particular with more complex places and non-linear interactions in data. 

The third model, Random Forest Regressor, is an ensemble of 100 decision trees fitted on random subsets of the 

training data with the bootstrap aggregation bagging). The maximum depth of each tree was applied to eight. Since 

Random Forests average across many trees, they are good at mitigating overfitting and at giving you more accurate 

predictions. These are potent tools for financial forecasting problems, which often involve complex or noisy relation-

ships between the variables. In this paper, Random Forest always outperformed in terms of evaluation indicators. 

We trained both models with the same training set and same feature matrix and check their prediction on the held-

out testing set. The training step was done by learning each model from the historical features and, tuning of the internal 

splits in order to minimize prediction error observation in the target variable. 

3.5. Evaluation Metrics 

In order to evaluate and compare the performance of the models, four well-known evaluation metrics were con-

sidered: RMSE, MAE, MAPE and R² (R-squared). RMSE also tells us how much error there is on average, and RMSE 

penalizes larger errors more than does MAE. The MAE gives a more intuitive average of the absolute predictions and 

differences, and yields a more meaningful metric for descriptive forecast purposes. MAPE is error as a percentage of 

the actual, so it can be compared across scales. Lastly, R² measures the ratio of the variance explained by the model and 

the target variable, the closer to 1 the better. 

All these metrics offer complementary characteristics of the behavior of the model: RMSE and MAE say something 

on the magnitude of the error, MAPE accounts for relative errors to estimate R² is a general indicator of adjustment 

about that line. We evaluated all models against these criteria to gauge the ability of a model in predicting Bitcoin price 

using aggregated features. 

4. Results and Discussion 

This section presents a comprehensive analysis of the experimental outcomes. The three selected machine learning 

models—LightGBM, Decision Tree, and Random Forest—were trained on the same dataset derived from merged 

Bitcoin price and blockchain transaction data. Each model was evaluated using four standard performance metrics: 

RMSE, MAE, MAPE, and R². 

4.1. Quantitative Performance Comparison 

Table 1 provides quantitative performance comparison for all models and metrics used in this research. 

Table 1 Quantitative Performance Comparison 

Model RMSE MAE MAPE R² Score 

LightGBM 482.56 345.73 0.54% 0.9862 

Decision Tree 357.85 246.51 0.32% 0.9924 

Random Forest 264.81 175.41 0.27% 0.9958 



Dasinya Journal for Engineering and Informatics. 2026, 1, 1. 6 of 9 
 

 

RMSE (Root Mean Squared Error): The Random Forest model gave the best prediction for RMSE and its RMSE 

values were much lower than that of RForest and Decision Tree models with only 264.81 USD error rate, in contrast to 

357.85 USD and 482.56 USD by Decision Tree and LightGBM respectively. A smaller RMSE corresponds to better gen-

eral model fit and less variability in prediction errors. 

MAE (Mean Absolute Error) MAE, which represents the average absolute difference between predicted and actual 

values, was minimal for Random Forest (175.41 USD). This also supports its robustness to predictitude in the range of 

actual bitcoin prices. LightGBM also exhibited highest MAE among others, suggesting it was less accurate. 

MAPE (Mean Absolute Percentage Error): MAPEs were remarkably low— well below 1% for all three models—

which suggested that the models were forecasting very accurately in proportion to the range of Bitcoin prices ($56,000-

$72,000). Remarkably, the Random Forest with a MAPE of 0.27% depicts that the model is capable of predicting per-

centage value accurately. 

R² Score: The proportion of the variance in the dependent variable that is predictable from the independent vari-

ables. Random Forest remained on top with R² = 0.9958, which implies it explained 99.58% of the variance in closing 

price. The Decision Tree came close, with LightGBM (which is a gradient boosting algorithm) slightly lower compared 

in this respect. 

4.2. Visual Inspection of Prediction Curves 

For each model, we plotted the predicted values against the actual closing prices. The plots revealed the following: 

LightGBM: As shown in Figure 2, the prediction line followed the actual values with noticeable fluctuations at the 

beginning and some lag in capturing local peaks. Its predictions were generally smoother but lacked responsiveness 

during rapid price movements. 

 

Figure 2. Visual Inspection of Prediction Curves of LightGBM. 

Decision Tree: As shown in Figure 3, the model captured the trend reasonably well but exhibited slight underfitting 

around sharp uptrends or downtrends. Although the overall directionality was consistent, precision was lost in volatile 

segments. 
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Figure 3. Visual Inspection of Prediction Curves of Decision Tree. 

Random Forest: As shown in Figure 4, provided the most visually accurate fit, tracking both general trends and 

short-term fluctuations with minimal deviation. It effectively modeled non-linear patterns and responded well to abrupt 

changes in the price curve. 

 

Figure 4. Visual Inspection of Prediction Curves of Random Forest. 

4.3. Model Behavior and Interpretability 

Though the Decision Tree is very interpretable and does little computation, it cannot capture complex patterns 

with a single-tree structure. Depending on its depth, it risks either overfitting or underfitting, but here with a 

max_depth=8 proved to be just about the sweet spot. 

It is possible that LightGBM, which is designed to work well on large datasets, does not harness the comparatively 

small spatio-temporal nature of this dataset. It is a feature-sensitive learner and more in-depth tuning may be needed 

to fully exploit its capacities. 

Random Forest, benefiting from ensemble averaging across multiple deep trees, mitigated variance and bias effec-

tively. It accounted for non-linearity both, which made it more resilient for our time series problem with the engineered 

lagged prices and RSI/SMA features. 

4.4. Role of Feature Engineering 

Technical indicators (SMA_14 and RSI_14) along with lag scores were the dominant predictors of the models: 

Lag Features (close_lag_1 to close_lag_5): The temporal aspect of the data can be recorded by the model. 

RSI & SMA: As trend and momentum indicators were helping to provide useful information for models to make 

better predictions. 
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confirmed_tx -As a blood-chain-native metric, it added a novel, non-price signal that was discovered to improve 

forecasting particularly in periods of high transaction volume. 

4.5. Implications and Practical Relevance 

Our findings suggest that somewhat small, domain-specific models are at least a good starting point for predicting 

the value of cryptocurrencies. The success of Random Forest has also suggested that for short-horizon forecasts, we 

may not require sophisticated neural networks with care feature engineering. From the perspective as a crypto-financial 

practitioner, these findings provide a proof of concept of incorporating transaction-based blockchain metrics for mod-

eling. 

5. Conclusions 

This study confirms the efficacy of utilizing blockchain transaction data, that is truly daily confirmed transactions 

in machine learning models, for predicting bitcoin price. It is in this setting that industry knowledge and expertise 

come to the fore and where we leveraged blockchain-native features, technical indicators, along with lags of historical 

prices to form a full-fledged feature set pertaining to market behaviour and network activity. Across all models consid-

ered, Random Forest performed best in terms of evaluation scores and outperformed LightGBM and Decision Tree for 

each metric, justifying the effectiveness of ensemble learning on time series prediction. The low RMSE, MAE and MAPE 

values and the high R² value indicate that the model is able to predict accurately. Our results reinforce the importance 

of tailored feature engineering and the potential of transaction data as a powerful forecasting signal. Future work will 

investigate longer forecasting horizons, real-time deployment, and the inclusion of additional blockchain metrics such 

as mempool size, average transaction fees, and network hashrate to further enhance forecasting performance. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AI Artificial Intelligence 

BTC Bitcoin 

DL Deep Learning 

DT Decision Tree 

GBM Gradient Boosting Machine 

LightGBM Light Gradient Boosting Machine 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MACD Moving Average Convergence Divergence 

ML Machine Learning 

RF Random Forest 

RMSE Root Mean Squared Error 

RSI Relative Strength Index 

R² Coefficient of Determination (R-squared) 

SMA Simple Moving Average 
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SVR Support Vector Regression 

TF-IDF Term Frequency–Inverse Document Frequency 

USD United States Dollar 

UTC Coordinated Universal Time 

XGBoost Extreme Gradient Boosting 
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