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Abstract 8 

Virtual Reality (VR) enables immersive, repeatable, and risk-free simulation of hazardous 9 

driving scenarios. VR is increasingly applied in autonomous vehicle (AV) research for 10 

safety evaluation, takeover training, and human–machine interaction (HMI) prototyping. 11 

This review synthesizes empirical work to assess the contributions of VR to takeover per- 12 

formance, training efficacy, ecological validity, and user acceptance. Evidence suggests 13 

that VR interventions can reduce takeover reaction times compared to conventional in- 14 

struction, support iterative HMI design, and enhance user familiarity and calibrated trust 15 

in AV systems. Persistent limitations include simulator sickness, sample homogeneity, fi- 16 

delity gaps between VR and on-road performance, and inconsistent reporting of scenario 17 

design. We recommend standardized reporting (PRISMA flow plus scenario metadata), 18 

longitudinal transfer studies, cross-cultural samples, and hybrid VR–AR validation meth- 19 

ods to strengthen transferability and regulatory acceptance. 20 

Keywords: Virtual Reality; Autonomous Vehicles; Human–Machine Interaction; Driver 21 

Training; Simulation 22 

 23 

1. Introduction 24 

The development of autonomous vehicles (AVs) represents one of the most transformative shifts in modern trans- 25 

portation, promising to enhance road safety, improve traffic efficiency, and expand mobility for populations tradition- 26 

ally underserved by conventional transport systems. Unlike traditional vehicles, AVs rely on advanced driver assistance 27 

systems (ADAS), artificial intelligence, and sensor-based decision-making to execute parts or the entirety of the driving 28 

task [1]. 29 

To standardize terminology and clarify expectations for automation, the Society of Automotive Engineers (SAE) 30 

International published the J3016 standard, which defines six levels of driving automation ranging from Level 0 (no 31 

driving automation) to Level 5 (full driving automation) [2]. This classification is based on two key dimensions: (1) the 32 

extent of the driver’s involvement in the dynamic driving task, and (2) the technological performance and equipment 33 

of the vehicle. The framework aligns with the definitions of the German Federal Highway Research Institute (BASt) and 34 

corresponds, to some extent, with those established by the U.S. National Highway Traffic Safety Administration 35 

(NHTSA) [3]. 36 

As illustrated in Figure 1, SAE J3016 provides a globally recognized taxonomy that distinguishes between driver 37 

support features and fully automated driving. 38 

At present, most commercially available vehicles operate at Levels 2–3, where drivers may engage in secondary 39 

tasks during automated driving but are still required to remain alert and respond promptly to a takeover request (TOR) 40 
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when the automated driving system reaches its operational limits. Research indicates that inappropriate or delayed 41 

responses to TORs can compromise road safety and undermine public trust in AV technologies [4]. Traditional driver 42 

training and licensing methods are poorly equipped to prepare users for these novel demands. In particular, real -world 43 

training cannot safely reproduce high-risk scenarios such as sudden system failures, sensor malfunctions, or unpredict- 44 

able road hazards.  45 

 46 

Figure 1. Levels of driving automation according to SAE J3016 [2]. 47 

VR offers a compelling alternative by enabling immersive, repeatable, and risk-free simulations of complex driving 48 

situations. VR environments allow drivers to practice takeover maneuvers, familiarize themselves with AV interfaces, 49 

and develop appropriate trust in automation without endangering themselves or others [5], [6]. 50 

This paper reviews recent empirical studies on the application of VR in AV contexts, with a particular focus on 51 

driver training, takeover performance, and user acceptance. By synthesizing existing evidence, the review highlights 52 

both the potential and the limitations of VR as a supporting technology for AV deployment, while outlining directions 53 

for future research. 54 

2. Methodology 55 

This review followed a structured search and thematic synthesis approach. We searched Scopus, Web of Science, 56 

IEEE Xplore, and ScienceDirect for publications published between 2016 and 2025 using search strings such as “virtual 57 

reality, autonomous vehicles, and VR driver training.” The initial search identified approximately 70 candidate studies. 58 

After screening titles and abstracts against predefined inclusion criteria (empirical focus on VR applications in AV 59 

safety, driver training, or human–machine interaction) and subsequent full-text review, 35 references were retained for 60 

synthesis. Extracted data included study objectives, experimental design, VR hardware/software, participant de- 61 

mographics, scenario descriptions, outcome measures, and principal findings. The synthesis is organized thematically 62 

into VR tools and infrastructure, safety validation and algorithm testing, takeover training and human factors, and 63 

limitations. A PRISMA-style flow diagram and an appendix table summarizing the 34 included studies (authors, year, 64 

n, VR setup, outcomes) are recommended for transparency and reproducibility. 65 

3. VR Simulation Infrastructure (Hardware and Software) 66 

3.1. Hardware platforms: HMDs, CAVEs, motion systems, sensors 67 
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The integration of VR into transportation engineering has become a critical tool for studying and developing AVs. 68 

VR simulators allow researchers to create controlled, safe, and cost-effective environments to test AV prototypes, eval- 69 

uate human-AV interaction, and train AI systems without the risks associated with real-world testing  [7], [8]. These 70 

simulations, which can mimic complex scenarios like bad weather, traffic congestion, and pedestrian behavior, are es- 71 

sential for addressing the significant challenges of achieving full Level 5 autonomy [9]. The hardware and software used 72 

in these setups range from consumer-grade devices to highly specialized, custom-built systems. 73 

VR Hardware 74 

The hardware components of a VR-based AV simulation system are designed to immerse the user and capture 75 

their responses to the virtual environment. 76 

• Head-Mounted Displays (HMDs): These are the most common and accessible pieces of VR hardware. HMDs such 77 

as the HTC Vive, Valve Index, and Meta Quest provide high-fidelity visual experiences, wide fields of view, and 78 

motion tracking that increase immersion. Researchers frequently prefer tethered, research-grade HMDs over mo- 79 

bile, phone-based solutions because of their superior tracking precision, lower latency, and support for room-scale 80 

experiences, attributes that materially affect experimental control and the quality of behavioral and sensor data 81 

collected in AV studies [10][10]. Figure 2 illustrates commonly used HMD models and typical headset configura- 82 

tions; differences in tracking fidelity, field-of-view, and tethering are important considerations when selecting an 83 

HMD for experimental protocols. 84 

 85 

Figure 2. Popular models of Head Mounted Displays for VR.  86 

• VR CAVE Systems: For multi-user or collaborative studies requiring external visual context, CAVE (Cave Auto- 87 

matic Virtual Environment) systems provide an alternative to single-user HMDs. A CAVE projects imagery onto 88 

multiple surfaces (walls, floor, ceiling) to create an enveloping virtual environment that multiple participants can 89 

enter and observe simultaneously. CAVE installations are especially useful for studying interactions that involve 90 

both vehicle occupants and external road users, and for prototyping external human–machine interfaces (eHMI) 91 

in socially shared spaces. A representative CAVE installation is shown in Figure 3; the figure emphasizes the multi - 92 

surface projection architecture and the potential for synchronous multi-participant observation and interaction. 93 

 94 

Figure 3. VR CAVE Systems 95 
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• Motion Platforms and Haptic Feedback: To increase the realism and ecological validity of the simulation, research- 96 

ers often integrate motion platforms and haptic devices. Motion platforms reproduce kinesthetic cues associated 97 

with acceleration, braking, and turning, while haptic devices (for example, vibrating seats or force-feedback steer- 98 

ing wheels) convey tactile road information and in-vehicle alerts. These forms of sensory augmentation help reduce 99 

simulator sickness and strengthen the sense of presence. Examples of instrumented driving hardware used to as- 100 

sess control-input fidelity, such as racing-simulator chassis and pedal assemblies, are provided in Figure 4. 101 

 102 

Figure 4: Racing-simulator chassis and pedal assembly for control-input fidelity assessments. 103 

• Physiological Data Capture: To get a deeper understanding of a user's response to the simulation, researchers may 104 

use additional sensors to capture physiological data. Devices for measuring heart rate, skin conductance, and elec- 105 

troencephalogram (EEG) data can infer a user's mental state, such as stress, anxiety, or arousal, providing valuable 106 

quantitative data for human-factors studies. 107 

3.2. Software stacks: Open-source, engines, and proprietary tools 108 

The software is the backbone of the simulation, providing the virtual world and the logic for the AV and its envi- 109 

ronment. 110 

• Open-Source Simulators: Open-source platforms have become indispensable for academic research due to their 111 

flexibility and accessibility. CARLA Simulator, developed expressly for autonomous driving research, is among 112 

the most widely adopted. CARLA provides a robust API that allows researchers to control dynamic entities such 113 

as traffic flow, pedestrian behavior, weather, and sensor inputs. Its customizable sensor suites (e.g., LiDAR, radar, 114 

monocular and stereo cameras) and built-in traffic manager for non-player characters make it highly versatile for 115 

both benchmarking and reinforcement learning. Another example is VSim-AV, which leverages the Unity engine 116 

to provide a modifiable platform for scenario design and AV performance evaluation [11]. The open-source model 117 

promotes transparency, community contributions, and rapid prototyping, albeit with potential limitations in fidel- 118 

ity compared to commercial solutions. 119 

• Game Engines: Commercial game engines such as Unity and Unreal Engine are increasingly integrated into AV 120 

research workflows because of their photorealistic rendering, physics engines, and modular scene-building capa- 121 

bilities. These platforms enable the creation of complex urban and rural driving environments with high graphical 122 

fidelity. Their extensibility allows integration of custom physics models and AI agents, making them suitable for 123 

both closed-loop driver-in-the-loop experiments and large-scale dataset generation for machine learning [11]. Com- 124 

pared to open-source options, game engines offer enhanced realism and professional toolchains, though licensing 125 

and performance optimization can present barriers. 126 

• Customs and Proprietary Software. In parallel, several research and industrial teams rely on proprietary software 127 

coupled with dedicated hardware to build domain-specific simulators. These systems are designed for specialized 128 

applications, such as testing human–vehicle interactions (HVI), evaluating external human–machine interfaces 129 

(eHMI), or validating advanced driver-assistance systems. Proprietary platforms typically provide high-fidelity 130 
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vehicle dynamics, validated physical models, and seamless integration with hardware-in-the-loop (HIL) architec- 131 

tures, though at considerably higher cost. Such configurations are particularly suited for late-stage industrial vali- 132 

dation and certification processes. 133 

• Cost and Fidelity Comparisons. To provide a comparative overview of commonly used VR simulation software 134 

and associated hardware, Table 1 presents representative tools with indicative cost ranges and fidelity levels. This 135 

summary highlights the scalability of open-source simulators, the realism afforded by professional game engines, 136 

and the comprehensive fidelity achieved through custom industrial platforms. 137 

Table 1. VR Simulation Tools, Costs, and Fidelity Levels 138 

Tool/Equipment Approx. Cost 

Range (USD) 

Fidelity Level 

CARLA (Open-source software) Free Software-based, scenario generation, 

low-cost, scalable 

Simcenter PreScan $20,000 - $50,000 High fidelity, physics-based, industry 

standard 

VI-grade VTD $50,000+ High fidelity, full-stack vehicle dynam-

ics + VR 

Consumer VR HMD (HTC 

Vive/Meta Quest) 

$400 - $1,500 Medium fidelity, visual immersion 

Research-grade driving cabin + 

motion system 

$100,000 - $500,000+ High fidelity, kinesthetic realism 

dSPACE HIL + SCALEXIO $50,000 - $200,000+ High fidelity, hardware-in-the-loop inte-

gration 

Tobii Pro Eye Tracker $5,000 - $20,000 High fidelity gaze/attention measure-

ment 

4. Applications for AV Development and Safety Validation 139 

4.1 Safety validation, scenario generation, and edge-case testing 140 

The automotive industry has traditionally relied on physical prototypes and extensive road testing for vehicle de- 141 

sign and validation. However, the integration of VR has introduced a transformative paradigm for accelerating devel- 142 

opment and improving safety validation [12]. VR enables the creation of detailed, interactive virtual representations of 143 

vehicles and manufacturing environments, allowing for real-time simulation, iterative testing, and optimization in a 144 

risk-free digital space [12], [13], [14]. 145 

One of the most significant advantages of VR platforms is their ability to replicate complex and hazardous driving 146 

conditions that are difficult or impossible to reproduce in real-world testing. For example, VR can simulate edge-case 147 

scenarios such as sudden pedestrian crossings, adverse weather conditions, and sensor malfunctions, thereby improv- 148 

ing the robustness of AV systems [15]. This approach enables a more comprehensive assessment of vehicle performance 149 

across diverse contexts, ultimately contributing to the development of safer and more reliable self -driving systems [16]. 150 

Moreover, VR accelerates the development cycle by allowing rapid iteration and testing of design modifications, 151 

reducing the time and costs associated with physical prototyping [14]. Applications extend beyond design, encompass- 152 

ing the validation of sensor performance, algorithm efficiency, and human–machine interface (HMI) elements, ensuring 153 

that autonomous systems function effectively before deployment [17]. A schematic overview of these application do- 154 

mains is provided in Figure 5, which illustrates the role of VR in safety validation, scenario generation, and system- 155 

level testing for autonomous vehicles. 156 
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 157 

Figure 5. Diagram of VR Applications in Automotive Development (adapted from [18]) 158 

4.2 Algorithmic testing, sensor anomaly injection, and performance benchmarking  159 

Safety validation remains one of the most pressing challenges for AV deployment. VR simulations provide a risk- 160 

free environment for evaluating key safety dimensions such as sensor fusion, AI-based navigation, and decision-making 161 

under uncertainty [19]. These virtual environments allow researchers to examine system responses to critical hazard 162 

blocked road markings, erratic driver behavior, or system failures—without exposing participants to real danger [20]. 163 

Furthermore, VR facilitates standardized testing protocols by offering repeatable and reproducible simulations of 164 

high-risk conditions. This strengthens safety benchmarks across the AV industry and builds public trust in automation 165 

[21]. By exposing vehicles to photorealistic representations of varied lighting, weather, and traffic densities, VR testing 166 

supports comprehensive validation of perception systems, which are crucial for ensuring reliable sensor performance.  167 

The literature highlights how VR contributes directly to addressing core safety challenges: immersive training im- 168 

proves takeover request (TOR) response times [4]; rare and dangerous hazards such as sudden pedestrian incursions 169 

can be simulated for robust system evaluation [15]; and sensor malfunction scenarios can be replicated to train emer- 170 

gency maneuvers [22]. Equally important, VR familiarization tours help calibrate trust in automation, preventing both 171 

over-reliance and underuse [23], while HMI prototypes can be iteratively tested to reduce user confusion [5], [17]. 172 

Table 2. Safety challenges in AVs and VR contributions 173 

Safety Challenge in AVs VR Contribution Key References 

Takeover Request (TOR) delays Immersive TOR training scenarios improve 

driver readiness and response time 

Sportillo et al. (2018). [4] 

Unpredictable road hazards (e.g., 

pedestrians, cyclists, sudden stops) 

VR replicates rare or dangerous edge-case sce-

narios in safe environments 

Candela et al. (2021); Chen 

et al. (2025). [15], [19] 

Sensor or system malfunctions VR allows simulation of sensor failures, ena-

bling drivers to practice emergency maneuvers 

Mirzarazi et al. (2024). [22] 

Overtrust or mistrust in automation VR familiarization tours calibrate driver trust 

and improve understanding of system limits 

Ebnali et al. (2021). [23] 

Human–Machine Interface (HMI) 

confusion 

VR enables iterative testing of dashboard lay-

outs and alerts before real-world trials 

Zou et al. (2021); Ried-

maier et al. (2020). [5], [17] 
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5. Human Factors 174 

5.1 Takeover requests and training efficacy 175 

A core human-factors challenge for conditionally automated vehicles is ensuring timely and appropriate takeover 176 

responses. VR permits repeated exposure to TOR scenarios, unexpected system limits, sensor failures, or complex traffic 177 

contexts, allowing subjects to practice and refine response strategies. Empirical studies report that VR-based training 178 

reduces takeover reaction times and improves procedural accuracy compared to conventional instruction alone. [4] VR 179 

training can therefore be an effective tool to increase immediate takeover preparedness. 180 

5.2 HMI prototyping and calibration of trust 181 

VR’s rapid-prototyping capability supports iterative testing of in-vehicle HMIs (dashboard alerts, eHMI for exter- 182 

nal intent signalling) and can reveal design features that reduce user confusion or ambiguity. [5], [17] Familiarization 183 

tours in VR help calibrate expectations, mitigating both overtrust and underuse of automation by allowing users to 184 

experience system limits in a controlled environment. [23] However, long-term transfer of training gains from VR to 185 

on-road behavior remains under-investigated and is a priority for future longitudinal studies. 186 

5.3 Public education and acceptance 187 

Beyond driver training, VR can be deployed for public demonstrations to increase awareness and acceptance of 188 

AV capabilities and limitations. Immersive experiences can align user expectations with actual system behaviors and 189 

thereby influence adoption trajectories. [23] 190 

6. Perception, Decision-making, and Explainability 191 

VR environments provide a robust platform for refining the perception and decision-making capabilities of auton- 192 

omous vehicles by enabling the generation of highly realistic and customizable sensor inputs [24]. This allows for the 193 

systematic injection of various sensor anomalies, occlusions, and adversarial conditions to evaluate the robustness of 194 

perception algorithms without risking real-world incidents [25] Furthermore, VR facilitates the development of sophis- 195 

ticated decision-making models by simulating rare and high-risk scenarios, such as sudden obstacle appearances or 196 

complex multi-agent interactions, which are crucial for training robust AI systems [26]. This rigorous simulation helps 197 

refine the vehicle's ability to interpret complex, dynamic environments through diverse data sources, including video 198 

streams, sensor measurements, and contextual textual information, while ensuring transparency in AI-driven decisions 199 

[27]. The capacity to meticulously analyze and refine these intricate decision pathways within a simulated environment 200 

is instrumental for developing explainable artificial intelligence for AVs, a critical factor for regulatory compliance and 201 

public acceptance [28]. Moreover, VR enables the testing of human-machine interaction elements, allowing developers 202 

to optimize how the AV communicates its intentions and decisions to occupants and external road users, thereby im- 203 

proving overall system safety and user trust.  204 

7. VR in Transport Research 205 

The use of VR in transport research is not new; early applications date back to aviation simulators and traffic psy- 206 

chology studies. In recent decades, however, advancements in VR hardware (e.g., head-mounted displays, haptic steer- 207 

ing wheels) and software (e.g., Unity, Unreal Engine) have significantly increased simulation fidelity and realism [29], 208 

[30]. 209 

In automotive contexts, VR enables risk-free exposure to dangerous conditions, precise control over experimental 210 

variables, and repeatability of scenarios that are infeasible in on-road trials [31]. Importantly, VR allows for large-scale 211 

stress-testing of AV algorithms under diverse traffic and environmental conditions, which would be prohibitively ex- 212 

pensive using traditional physical testing [32]. By generating statistically significant datasets of rare and challenging 213 

scenarios, VR enhances the reliability of safety assessments and provides regulators with stronger evidence of AV read- 214 

iness. 215 

8. Limitations, Methodological Gaps, and Ethical Considerations 216 
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8.1 Simulator sickness and sensory fidelity 217 

Simulator sickness from visual–vestibular mismatch reduces usable session lengths and excludes a subset of par- 218 

ticipants. [5] Sensory fidelity, particularly vestibular and tactile realism, remains a principal limit on ecological validity 219 

for certain behaviors. [33] Where kinesthetic feedback matters (e.g., fine control during steering recovery), VR-only 220 

setups can under-represent real-world dynamics. 221 

8.2 Sample heterogeneity and generalizability 222 

Many primary studies rely on small, convenience samples (often students), which restricts generalizability across 223 

demographic and cross-cultural populations [34]. The field needs larger, more representative samples and multi-site 224 

studies to validate findings robustly. 225 

8.3 Incomplete reporting and reproducibility 226 

A recurrent issue is inconsistent reporting: scenario parameters, hardware/software versions, sensor models, and 227 

validation metrics are often absent or insufficiently detailed. This inhibits reproducibility and comparative synthesis. 228 

The manuscript recommends standardized reporting templates (scenario metadata + outcome definitions) and the in- 229 

clusion of a PRISMA-style flow and appendix table to improve transparency. 230 

8.4 Ethical and regulatory considerations 231 

Simulating hazardous events can raise ethical questions if users experience high stress. Institutional review and 232 

informed consent processes should explicitly outline simulated stressors and exit protocols. Regulatory uptake of VR- 233 

derived evidence requires standardized validation procedures and transparent linkage between simulated outcomes 234 

and field performance [34]. 235 

9. Recommendations and Future Directions 236 

1. Standardize reporting: Adopt a minimum reporting dataset (PRISMA flow + scenario metadata, hardware/soft- 237 

ware versions, sensor models, subject demographics) to improve comparability and reproducibility.  238 

2. Longitudinal transfer studies: Assess retention and real-world transfer of VR-trained takeover skills through lon- 239 

gitudinal designs and field validation. 240 

3. Hybrid validation methods: Combine VR with AR, motion platforms, or controlled-track validation to bridge sen- 241 

sorial gaps and enhance external validity. 242 

4. Cross-cultural and representative sampling: Prioritize diverse participant pools to examine cultural and demo- 243 

graphic moderators of trust and HMI interpretation. 244 

5. Integration with explainable AI: Use VR to test interfaces that communicate AV decisions to humans and to eval- 245 

uate the effect on trust calibration. 246 

10. Conclusions 247 

VR is a promising platform for accelerating AV safety validation, HMI prototyping, and takeover training in con- 248 

trolled, repeatable settings. Empirical evidence supports VR’s role in improving immediate takeover performance and 249 

facilitating rapid HMI iteration; however, the field must address ecological validity, simulator sickness, small/homoge- 250 

neous samples, and inconsistent reporting. Standardized methods, hybrid validation designs, and longitudinal transfer 251 

studies are the necessary next steps to make VR-derived evidence actionable for regulators and industry. 252 
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