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Abstract 

Virtual Reality (VR) enables immersive, repeatable, and risk-free simulation of hazardous 

driving scenarios. VR is increasingly applied in autonomous vehicle (AV) research for 

safety evaluation, takeover training, and human–machine interaction (HMI) prototyping. 

This review synthesizes empirical work to assess the contributions of VR to takeover 

performance, training efficacy, ecological validity, and user acceptance. Evidence 

suggests that VR interventions can reduce takeover reaction times compared to 

conventional instruction, support iterative HMI design, and enhance user familiarity and 

calibrated trust in AV systems. Persistent limitations include simulator sickness, sample 

homogeneity, fidelity gaps between VR and on-road performance, and inconsistent 

reporting of scenario design. We recommend standardized reporting (PRISMA flow plus 

scenario metadata), longitudinal transfer studies, cross-cultural samples, and hybrid VR–

AR validation methods to strengthen transferability and regulatory acceptance. 

Keywords: Virtual Reality; Autonomous Vehicles; Human–Machine Interaction; Driver 

Training; Simulation 

 

1. Introduction 

The development of autonomous vehicles (AVs) represents one of the most transformative shifts in modern 

transportation, promising to enhance road safety, improve traffic efficiency, and expand mobility for populations 

traditionally underserved by conventional transport systems. Unlike traditional vehicles, AVs rely on advanced driver 

assistance systems (ADAS), artificial intelligence, and sensor-based decision-making to execute parts or the entirety of 

the driving task [1]. 

To standardize terminology and clarify expectations for automation, the Society of Automotive Engineers (SAE) 

International published the J3016 standard, which defines six levels of driving automation ranging from Level 0 (no 

driving automation) to Level 5 (full driving automation) [2]. This classification is based on two key dimensions: (1) the 

extent of the driver’s involvement in the dynamic driving task, and (2) the technological performance and equipment 

of the vehicle. The framework aligns with the definitions of the German Federal Highway Research Institute (BASt) and 

corresponds, to some extent, with those established by the U.S. National Highway Traffic Safety Administration 

(NHTSA) [3]. 

As illustrated in Figure 1, SAE J3016 provides a globally recognized taxonomy that distinguishes between driver 

support features and fully automated driving. 

At present, most commercially available vehicles operate at Levels 2–3, where drivers may engage in secondary 

tasks during automated driving but are still required to remain alert and respond promptly to a takeover request (TOR) 

when the automated driving system reaches its operational limits. Research indicates that inappropriate or delayed 
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responses to TORs can compromise road safety and undermine public trust in AV technologies [4]. Traditional driver 

training and licensing methods are poorly equipped to prepare users for these novel demands. In particular, real-world 

training cannot safely reproduce high-risk scenarios such as sudden system failures, sensor malfunctions, or 

unpredictable road hazards.  

 

Figure 1. Levels of driving automation according to SAE J3016 [2]. 

VR offers a compelling alternative by enabling immersive, repeatable, and risk-free simulations of complex driving 

situations. VR environments allow drivers to practice takeover maneuvers, familiarize themselves with AV interfaces, 

and develop appropriate trust in automation without endangering themselves or others [5,6]. 

This paper reviews recent empirical studies on the application of VR in AV contexts, with a particular focus on 

driver training, takeover performance, and user acceptance. By synthesizing existing evidence, the review highlights 

both the potential and the limitations of VR as a supporting technology for AV deployment, while outlining directions 

for future research. 

2. Methodology 

This review followed a structured search and thematic synthesis approach. We searched Scopus, Web of Science, 

IEEE Xplore, and ScienceDirect for publications published between 2016 and 2025 using search strings such as “virtual 

reality, autonomous vehicles, and VR driver training.” The initial search identified approximately 70 candidate studies. 

After screening titles and abstracts against predefined inclusion criteria (empirical focus on VR applications in AV 

safety, driver training, or human–machine interaction) and subsequent full-text review, 35 references were retained for 

synthesis. Extracted data included study objectives, experimental design, VR hardware/software, participant 

demographics, scenario descriptions, outcome measures, and principal findings. The synthesis is organized 

thematically into VR tools and infrastructure, safety validation and algorithm testing, takeover training and human 

factors, and limitations. A PRISMA-style flow diagram and an appendix table summarizing the 34 included studies 

(authors, year, n, VR setup, outcomes) are recommended for transparency and reproducibility. 



Dasinya Journal for Engineering and Informatics. 2025, 1, 3. 3 of 10 
 

 

3. VR Simulation Infrastructure (Hardware and Software) 

3.1. Hardware platforms: HMDs, CAVEs, motion systems, sensors 

The integration of VR into transportation engineering has become a critical tool for studying and developing AVs. 

VR simulators allow researchers to create controlled, safe, and cost-effective environments to test AV prototypes, 

evaluate human-AV interaction, and train AI systems without the risks associated with real-world testing  [7,8]. These 

simulations, which can mimic complex scenarios like bad weather, traffic congestion, and pedestrian behavior, are 

essential for addressing the significant challenges of achieving full Level 5 autonomy [9]. The hardware and software 

used in these setups range from consumer-grade devices to highly specialized, custom-built systems. 

VR Hardware 

The hardware components of a VR-based AV simulation system are designed to immerse the user and capture 

their responses to the virtual environment. 

• Head-Mounted Displays (HMDs): These are the most common and accessible pieces of VR hardware. HMDs such 

as the HTC Vive, Valve Index, and Meta Quest provide high-fidelity visual experiences, wide fields of view, and 

motion tracking that increase immersion. Researchers frequently prefer tethered, research-grade HMDs over 

mobile, phone-based solutions because of their superior tracking precision, lower latency, and support for room-

scale experiences, attributes that materially affect experimental control and the quality of behavioral and sensor 

data collected in AV studies [10][10]. Figure 2 illustrates commonly used HMD models and typical headset 

configurations; differences in tracking fidelity, field-of-view, and tethering are important considerations when 

selecting an HMD for experimental protocols. 

 

Figure 2. Popular models of Head Mounted Displays for VR.  

• VR CAVE Systems: For multi-user or collaborative studies requiring external visual context, CAVE (Cave 

Automatic Virtual Environment) systems provide an alternative to single-user HMDs. A CAVE projects imagery 

onto multiple surfaces (walls, floor, ceiling) to create an enveloping virtual environment that multiple participants 

can enter and observe simultaneously. CAVE installations are especially useful for studying interactions that 

involve both vehicle occupants and external road users, and for prototyping external human–machine interfaces 

(eHMI) in socially shared spaces. A representative CAVE installation is shown in Figure 3; the figure emphasizes 

the multi-surface projection architecture and the potential for synchronous multi-participant observation and 

interaction. 

 

Figure 3. VR CAVE Systems 
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• Motion Platforms and Haptic Feedback: To increase the realism and ecological validity of the simulation, 

researchers often integrate motion platforms and haptic devices. Motion platforms reproduce kinesthetic cues 

associated with acceleration, braking, and turning, while haptic devices (for example, vibrating seats or 

force-feedback steering wheels) convey tactile road information and in-vehicle alerts. These forms of sensory 

augmentation help reduce simulator sickness and strengthen the sense of presence. Examples of instrumented 

driving hardware used to assess control-input fidelity, such as racing-simulator chassis and pedal assemblies, are 

provided in Figure 4. 

 

Figure 4: Racing-simulator chassis and pedal assembly for control-input fidelity assessments. 

• Physiological Data Capture: To get a deeper understanding of a user's response to the simulation, researchers may 

use additional sensors to capture physiological data. Devices for measuring heart rate, skin conductance, and 

electroencephalogram (EEG) data can infer a user's mental state, such as stress, anxiety, or arousal, providing 

valuable quantitative data for human-factors studies. 

3.2. Software stacks: Open-source, engines, and proprietary tools 

The software is the backbone of the simulation, providing the virtual world and the logic for the AV and its 

environment. 

• Open-Source Simulators: Open-source platforms have become indispensable for academic research due to their 

flexibility and accessibility. CARLA Simulator, developed expressly for autonomous driving research, is among 

the most widely adopted. CARLA provides a robust API that allows researchers to control dynamic entities such 

as traffic flow, pedestrian behavior, weather, and sensor inputs. Its customizable sensor suites (e.g., LiDAR, radar, 

monocular and stereo cameras) and built-in traffic manager for non-player characters make it highly versatile for 
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both benchmarking and reinforcement learning. Another example is VSim-AV, which leverages the Unity engine 

to provide a modifiable platform for scenario design and AV performance evaluation [11]. The open-source model 

promotes transparency, community contributions, and rapid prototyping, albeit with potential limitations in 

fidelity compared to commercial solutions. 

• Game Engines: Commercial game engines such as Unity and Unreal Engine are increasingly integrated into AV 

research workflows because of their photorealistic rendering, physics engines, and modular scene-building 

capabilities. These platforms enable the creation of complex urban and rural driving environments with high 

graphical fidelity. Their extensibility allows integration of custom physics models and AI agents, making them 

suitable for both closed-loop driver-in-the-loop experiments and large-scale dataset generation for machine 

learning [11]. Compared to open-source options, game engines offer enhanced realism and professional toolchains, 

though licensing and performance optimization can present barriers. 

• Customs and Proprietary Software. In parallel, several research and industrial teams rely on proprietary software 

coupled with dedicated hardware to build domain-specific simulators. These systems are designed for specialized 

applications, such as testing human–vehicle interactions (HVI), evaluating external human–machine interfaces 

(eHMI), or validating advanced driver-assistance systems. Proprietary platforms typically provide high-fidelity 

vehicle dynamics, validated physical models, and seamless integration with hardware-in-the-loop (HIL) 

architectures, though at considerably higher cost. Such configurations are particularly suited for late-stage 

industrial validation and certification processes. 

• Cost and Fidelity Comparisons. To provide a comparative overview of commonly used VR simulation software 

and associated hardware, Table 1 presents representative tools with indicative cost ranges and fidelity levels. This 

summary highlights the scalability of open-source simulators, the realism afforded by professional game engines, 

and the comprehensive fidelity achieved through custom industrial platforms. 

Table 1. VR Simulation Tools, Costs, and Fidelity Levels 

Tool/Equipment Approx. Cost 

Range (USD) 

Fidelity Level 

CARLA (Open-source software) Free Software-based, scenario generation, 

low-cost, scalable 

Simcenter PreScan $20,000 - $50,000 High fidelity, physics-based, industry 

standard 

VI-grade VTD $50,000+ High fidelity, full-stack vehicle 

dynamics + VR 

Consumer VR HMD (HTC 

Vive/Meta Quest) 

$400 - $1,500 Medium fidelity, visual immersion 

Research-grade driving cabin + 

motion system 

$100,000 - $500,000+ High fidelity, kinesthetic realism 

dSPACE HIL + SCALEXIO $50,000 - $200,000+ High fidelity, hardware-in-the-loop 

integration 

Tobii Pro Eye Tracker $5,000 - $20,000 High fidelity gaze/attention 

measurement 

4. Applications for AV Development and Safety Validation 

4.1 Safety validation, scenario generation, and edge-case testing 

The automotive industry has traditionally relied on physical prototypes and extensive road testing for vehicle 

design and validation. However, the integration of VR has introduced a transformative paradigm for accelerating 

development and improving safety validation [12]. VR enables the creation of detailed, interactive virtual 

representations of vehicles and manufacturing environments, allowing for real-time simulation, iterative testing, and 

optimization in a risk-free digital space [12–14]. 
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One of the most significant advantages of VR platforms is their ability to replicate complex and hazardous driving 

conditions that are difficult or impossible to reproduce in real-world testing. For example, VR can simulate edge-case 

scenarios such as sudden pedestrian crossings, adverse weather conditions, and sensor malfunctions, thereby 

improving the robustness of AV systems [15]. This approach enables a more comprehensive assessment of vehicle 

performance across diverse contexts, ultimately contributing to the development of safer and more reliable self-driving 

systems [16]. 

Moreover, VR accelerates the development cycle by allowing rapid iteration and testing of design modifications, 

reducing the time and costs associated with physical prototyping [14]. Applications extend beyond design, 

encompassing the validation of sensor performance, algorithm efficiency, and human–machine interface (HMI) 

elements, ensuring that autonomous systems function effectively before deployment [17]. A schematic overview of 

these application domains is provided in Figure 5, which illustrates the role of VR in safety validation, scenario 

generation, and system-level testing for autonomous vehicles. 

 

Figure 5. Diagram of VR Applications in Automotive Development (adapted from [18]) 

4.2 Algorithmic testing, sensor anomaly injection, and performance benchmarking 

Safety validation remains one of the most pressing challenges for AV deployment. VR simulations provide a risk-

free environment for evaluating key safety dimensions such as sensor fusion, AI-based navigation, and decision-making 

under uncertainty [19]. These virtual environments allow researchers to examine system responses to critical hazard 

blocked road markings, erratic driver behavior, or system failures—without exposing participants to real danger [20]. 

Furthermore, VR facilitates standardized testing protocols by offering repeatable and reproducible simulations of 

high-risk conditions. This strengthens safety benchmarks across the AV industry and builds public trust in automation 

[21]. By exposing vehicles to photorealistic representations of varied lighting, weather, and traffic densities, VR testing 

supports comprehensive validation of perception systems, which are crucial for ensuring reliable sensor performance. 

The literature highlights how VR contributes directly to addressing core safety challenges: immersive training 

improves takeover request (TOR) response times [4]; rare and dangerous hazards such as sudden pedestrian incursions 

can be simulated for robust system evaluation [15]; and sensor malfunction scenarios can be replicated to train 

emergency maneuvers [22]. Equally important, VR familiarization tours help calibrate trust in automation, preventing 

both over-reliance and underuse [23], while HMI prototypes can be iteratively tested to reduce user confusion [5,17]. 

Table 2. Safety challenges in AVs and VR contributions 

Safety Challenge in AVs VR Contribution Key References 

Takeover Request (TOR) delays Immersive TOR training scenarios improve 

driver readiness and response time 

Sportillo et al. (2018). [4] 

Unpredictable road hazards (e.g., 

pedestrians, cyclists, sudden stops) 

VR replicates rare or dangerous edge-case 

scenarios in safe environments 

Candela et al. (2021); 

Chen et al. (2025). [15,19] 
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Sensor or system malfunctions VR allows simulation of sensor failures, 

enabling drivers to practice emergency 

maneuvers 

Mirzarazi et al. (2024). 

[22] 

Overtrust or mistrust in automation VR familiarization tours calibrate driver trust 

and improve understanding of system limits 

Ebnali et al. (2021). [23] 

Human–Machine Interface (HMI) 

confusion 

VR enables iterative testing of dashboard 

layouts and alerts before real-world trials 

Zou et al. (2021); 

Riedmaier et al. (2020). 

[5,17] 

5. Human Factors 

5.1 Takeover requests and training efficacy 

A core human-factors challenge for conditionally automated vehicles is ensuring timely and appropriate takeover 

responses. VR permits repeated exposure to TOR scenarios, unexpected system limits, sensor failures, or complex traffic 

contexts, allowing subjects to practice and refine response strategies. Empirical studies report that VR-based training 

reduces takeover reaction times and improves procedural accuracy compared to conventional instruction alone. [4] VR 

training can therefore be an effective tool to increase immediate takeover preparedness. 

5.2 HMI prototyping and calibration of trust 

VR’s rapid-prototyping capability supports iterative testing of in-vehicle HMIs (dashboard alerts, eHMI for 

external intent signalling) and can reveal design features that reduce user confusion or ambiguity. [5], [17] 

Familiarization tours in VR help calibrate expectations, mitigating both overtrust and underuse of automation by 

allowing users to experience system limits in a controlled environment. [23] However, long-term transfer of training 

gains from VR to on-road behavior remains under-investigated and is a priority for future longitudinal studies. 

5.3 Public education and acceptance 

Beyond driver training, VR can be deployed for public demonstrations to increase awareness and acceptance of 

AV capabilities and limitations. Immersive experiences can align user expectations with actual system behaviors and 

thereby influence adoption trajectories. [23] 

6. Perception, Decision-making, and Explainability 

VR environments provide a robust platform for refining the perception and decision-making capabilities of 

autonomous vehicles by enabling the generation of highly realistic and customizable sensor inputs [24]. This allows for 

the systematic injection of various sensor anomalies, occlusions, and adversarial conditions to evaluate the robustness 

of perception algorithms without risking real-world incidents [25] Furthermore, VR facilitates the development of 

sophisticated decision-making models by simulating rare and high-risk scenarios, such as sudden obstacle appearances 

or complex multi-agent interactions, which are crucial for training robust AI systems [26]. This rigorous simulation 

helps refine the vehicle's ability to interpret complex, dynamic environments through diverse data sources, including 

video streams, sensor measurements, and contextual textual information, while ensuring transparency in AI-driven 

decisions [27]. The capacity to meticulously analyze and refine these intricate decision pathways within a simulated 

environment is instrumental for developing explainable artificial intelligence for AVs, a critical factor for regulatory 

compliance and public acceptance [28]. Moreover, VR enables the testing of human-machine interaction elements, 

allowing developers to optimize how the AV communicates its intentions and decisions to occupants and external road 

users, thereby improving overall system safety and user trust.  

7. VR in Transport Research 

The use of VR in transport research is not new; early applications date back to aviation simulators and traffic 

psychology studies. In recent decades, however, advancements in VR hardware (e.g., head-mounted displays, haptic 

steering wheels) and software (e.g., Unity, Unreal Engine) have significantly increased simulation fidelity and realism 

[29,30]. 
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In automotive contexts, VR enables risk-free exposure to dangerous conditions, precise control over experimental 

variables, and repeatability of scenarios that are infeasible in on-road trials [31]. Importantly, VR allows for large-scale 

stress-testing of AV algorithms under diverse traffic and environmental conditions, which would be prohibitively 

expensive using traditional physical testing [32]. By generating statistically significant datasets of rare and challenging 

scenarios, VR enhances the reliability of safety assessments and provides regulators with stronger evidence of AV 

readiness. 

8. Limitations, Methodological Gaps, and Ethical Considerations 

8.1 Simulator sickness and sensory fidelity 

Simulator sickness from visual–vestibular mismatch reduces usable session lengths and excludes a subset of 

participants. [5] Sensory fidelity, particularly vestibular and tactile realism, remains a principal limit on ecological 

validity for certain behaviors. [33] Where kinesthetic feedback matters (e.g., fine control during steering recovery), VR-

only setups can under-represent real-world dynamics. 

8.2 Sample heterogeneity and generalizability 

Many primary studies rely on small, convenience samples (often students), which restricts generalizability across 

demographic and cross-cultural populations [34]. The field needs larger, more representative samples and multi-site 

studies to validate findings robustly. 

8.3 Incomplete reporting and reproducibility 

A recurrent issue is inconsistent reporting: scenario parameters, hardware/software versions, sensor models, and 

validation metrics are often absent or insufficiently detailed. This inhibits reproducibility and comparative synthesis. 

The manuscript recommends standardized reporting templates (scenario metadata + outcome definitions) and the 

inclusion of a PRISMA-style flow and appendix table to improve transparency. 

8.4 Ethical and regulatory considerations 

Simulating hazardous events can raise ethical questions if users experience high stress. Institutional review and 

informed consent processes should explicitly outline simulated stressors and exit protocols. Regulatory uptake of VR-

derived evidence requires standardized validation procedures and transparent linkage between simulated outcomes 

and field performance [34]. 

9. Recommendations and Future Directions 

1. Standardize reporting: Adopt a minimum reporting dataset (PRISMA flow + scenario metadata, 

hardware/software versions, sensor models, subject demographics) to improve comparability and reproducibility.  

2. Longitudinal transfer studies: Assess retention and real-world transfer of VR-trained takeover skills through 

longitudinal designs and field validation. 

3. Hybrid validation methods: Combine VR with AR, motion platforms, or controlled-track validation to bridge 

sensorial gaps and enhance external validity. 

4. Cross-cultural and representative sampling: Prioritize diverse participant pools to examine cultural and 

demographic moderators of trust and HMI interpretation. 

5. Integration with explainable AI: Use VR to test interfaces that communicate AV decisions to humans and to 

evaluate the effect on trust calibration. 

10. Conclusions 

VR is a promising platform for accelerating AV safety validation, HMI prototyping, and takeover training in 

controlled, repeatable settings. Empirical evidence supports VR’s role in improving immediate takeover performance 

and facilitating rapid HMI iteration; however, the field must address ecological validity, simulator sickness, 

small/homogeneous samples, and inconsistent reporting. Standardized methods, hybrid validation designs, and 
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longitudinal transfer studies are the necessary next steps to make VR-derived evidence actionable for regulators and 

industry. 
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