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Abstract

Breast cancer is an alarming worldwide health concern, and early detection is crucial for
improving patient outcomes. This study explores the application of deep learning algo-
rithmsin breast thermography, a non-invasive and radiation-free imaging technique, to
enhance diagnostic accuracy. This research synthesizes peer-reviewed literature from
2020 to 2025, focusing on various deep learning architectures, including CNNs, GANSs,
RNNSs, U-Net, and transfer learning, in relation to thermographic datasets like DMR-IR
and Visual DMR. The methodology employs a structured approach encompassing litera-
ture searches, criteria for inclusion and exclusion, data extraction, and synthesis. The find-
ings indicate that deep learning significantly enhances segmentation, classification, and
anomaly detection in thermal breast images, frequently surpassing traditional diagnostic
techniques. While accuracy rates are promising, challenges persist, such as limitations in
datasets, variability in images, and a lack of standardization. This study highlights the
potential of Al-enhanced thermography as a cost-effective and scalable method for breast
cancer screening, while also identifying key areas for further research to enhance gener-
alizability and clinical application.

Keywords: Deep Learning, Breast Thermography, Thermal Imaging, Breast Cancer De-
tection, Medical Imaging

1. Introduction

The global rate of cancer continues to be high worldwide in recent years. Tens of millions of individuals receive a
new cancer diagnosis every year. Suffering from cancer also claims the lives of millions, if not tens of millions, of indi-
viduals every year across the entire world. [1]. “According to the WHO, female breast cancer accounts for 11.6% of all
new cases, with 2.3 million instances, placing it as the world's second most prevalent cancer after lung cancer” [2]. Most
patients with breast cancer are already at an advanced stage, which contributes to the high death rate from the disease.
If breast cancer is detected at stage I without the cancer cells invading the lymph nodes, the cure rate is 80-90%[3].

Overall, tumorslarger than 30 mm are seen in 70% of instances of breast cancer. Becausebreast cancer can manifest
in a variety of ways, a comprehensive medical checkup is necessary. Consequently, reducing disease-related mortality
relies on early detection and periodic exams [4]. Standard testing should be conducted on women who demonstrate
persistent anomalies lasting one month or longer. The two most popular techniques for breast screening are mammog-
raphy and clinical breast examination [5]. However, thermography is currently another screening method that can be
employed. Thermal imaging assists in recognizing cancer by using an infrared camera to capture heat map images of
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thetarget surface of breast. Recent developmentsin technology have madeit possible to use thermography for screening
processes with the aid of machine learning[6] [7].

The focus of intense research in computer vision and artificial intelligence is the employ of deep learning technol-
ogy to diagnose cancer from medicalimage. Inaddition to theintrinsic particularity and complexity of medicalimaging,
cancer detection demands extremely high accuracy and timeliness due to the rapid development of deep learning tech-
niques [8]. A comprehensive review of relevant works is essential to assist readers in understanding the current status
of research and ideas more clearly. This review aims to study the techniques of deep learning to detect breast cancer
through breast thermography. Compared with other methods such as radiography and ultrasound, breast thermogra-
phy is low-cost, less harmful, and shows high accuracy compared to previously existing methods. Through the review
conducted, breast cancer detection methods show high accuracy by applying deep learning techniques to breast ther-
mography. The organized rest of this review paper is presented as follows: The methodology is outlined in Section 2.
Section 3 is basic information about breast cancer detection. While, Section 4 discusses breast thermography in cancer
detection. Section 5 reviews the most important literature reviews and comparative summary of the reviewed literature
during the five years related to the topic of this research paper. Sections 6 discussion of what was summarized. Finally,
there is a conclusion in Section 7.

2.  Methodology

This review followed a structured and transparent methodology to identify, screen, and synthesize recent works
on the use of thermography and deep learning techniques for breast cancer detection between 2020 and 2025. Several
academic databases, including Scopus, Google Scholar, IEEE Xplore, PubMed, and ScienceDirect, were extensively

as

searched using keywords and Boolean combinations such as “breast thermography,” “deep learning,” “thermal imag-
ing,” “convolutionalneural network,” “DMR-IR dataset,” and “breast cancer detection,” while references from major
papers were also reviewed to locate additional sources.

Studies were included if they employed breast thermography as the imaging modality, utilized state-of-the-art
machine learning and deep learning methods such as autoencoders, CNNs, or transfer learning, and reported quanti-
tative performance metrics such as accuracy, precision, specificity, sensitivity, or balanced accuracy. Only peer-re-
viewed journal and conference papers published between 2020 and 2025 were considered, while studies based on other
imaging modalities (e.g., mammography, ultrasonography), works focusing purely on hardware development without
algorithmic evaluation, and grey literature such as theses or preprints were excluded.

From each eligible study, the year of publication, dataset used (e.g.,, DMR-IR, Visual DMR, multicenter thermo-
grams), deep learning technique (e.g., CNN, U-Net, ResNet, VGG, DenseNet, autoencoder, attention mechanism), eval-
uation metrics, and key findings and limitations were extracted. The synthesis of findings indicated that deep learning
considerably enhances the performance of breast thermography for cancer diagnosis, with CNNs, GANs, U-Nets, and
transfer learning models applied to DMR-IR and Visual DMR datasets consistently achieving strong results in classifi-
cation and segmentation tasks. Hybrid models and data augmentation strategies further improved robustness, while
transfer learning proved especially effective with limited datasets. Despite these promising outcomes, challenges such
as small dataset sizes, inconsistent imaging methodologies, and low generalizability remain, highlighting the need for
standardized datasets, transparent models, and stronger validation protocols to advance Al-enhanced thermography
toward clinical adoption.

According to the reviewed studies, deep learning considerably improves breast thermography for cancer diagno-
sis. Using the DMR-IR and Visual DMR datasets, CNNs, GANs, U-Nets, and transfer learning models consistently
achieved good results in classification and segmentation tasks. While hybrid models and augmentation strategies en-
hanced robustness, transfer learning was especially effective with less data.

Challenges continue even though there were positive results. Clinical adoption is hindered by small datasets, in-
consistent imaging methodologies, and low generalizability. Results highlight the need for more consistent datasets,
more transparent models, and stronger validation topave the way for Al-enhanced thermography to be used in the real
world.
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3. Breast Cancer Detection Background

Among women worldwide, breast cancer continues to be the most prevalent cancer. and it poses a serious
threat to modern society. Timely identification of breast cancer has the ability to significantly improve the lives of innu-
merable people who are at risk globally. Age, history of family, and reproductive variables are the most significant risk
factors for breast cancer. Furthermore, although there is currently little evidence to draw firm conclusions, hormonal
factors and contemporary lifestyle choices are related to a higher risk of breast cancer in women. The variables that
affect the risk of breast cancer are listed in Table 1 by [9] P. Wang, J. Chen, and W. Zhao. The possibility of a successful
course of therapy and survival is significantly increased when breast cancer is detected early. Here are a few methods
for identifying breast cancer.

Table 1: Categories of breast cancer risk factors and their roles

Category Protective Role Risk-Increasing Role Uncertain / Debated
Demographic - Female gender, Advanced age -
. Full-term pregnancy, Early Late menopause, Nulliparity, Age at menarche, Men-
Reproductive first childbirth Abortion strual cycle regularity

Contraceptive methods,
Postmenopausal hormone ther-
Hormonal - .. ) Pregnancy-related hor-
apy, Ovulation-inducing drugs mones

. Family history of breast cancer,
Hereditary - . . . -
Inherited genetic mutations

Highb t density, Beni ) )
Breast-related - igh breas (?n51 y, benign Shorter lactation duration
breast disorders
Regular physical activity,

Lifestyle Healthy diet, Adequate vita- Alcohol intake, Smoking, Obe- Coffee consumption, Sleep

sity/overweight duration

min D y gh

Environmen- Radiation exposure, Diabetes, Night-shift work, Low so-
tal / Other Air pollution cioeconomic status

4. Breast Thermography in Cancer Detection

As a complement for the early detection of abnormalities in the female breast, thermography measures the tem-
perature of the breast area as the heat radiated to the environment by the skin surface. [9]. Through the transformation
of radiationintensity, ”a thermographic camera generates a thermogram, whichisshaped by the temperaturesarranged

in a two-dimensional array” [10]. Figure 1 shows the entire workflow of the above method.

>0 =) §

Infrared thermal

camera Breast thermal image obtained- Blue boundary on grayscale
showing possible tumor boundary Sh".w’“g ef‘t'a‘:ted vessel
Patient under the regions using software

test

Figure 1 : process of breast thermography for the screening of malignancy cancer
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Because each area is influenced by both endogenous and exogenous factors, the temperatures that each breast
projects are not consistent. Tumors distort vascularization, which causes localized temperature changes that are trans-
ferred to the skin's surface. Breast thermography depends on evaluating these thermographic images to detect tissue
abnormalities early in order to lessen the suffering and death rate from breast cancer [11]. Additionally, thermograms
havebeen used as datasets to perform image processing tasks, such as segmentation, feature extraction, and classifica-
tion [12]. In 2014, Da Silva et al. “published accessible via Federal Fluminense University the first public database of
breast thermography images, marking a significant milestone” [13].

5. Literature Review

Deep learning has revolutionized medical image analysis by providing highly accurate, flexible, and generalizable
models compared to traditional mathematical and signal-processing approaches[14][15] . Convolutional Neural Net-
works (CNNs) are the most widely applied, as they can automatically extract hierarchical features from input data and
have proven effective in classification, segmentation, and anomaly detection, particularly in breast cancer detection
where they often outperform conventional methods [16]. Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks extend this capability to sequential and temporal data, making them useful for dynamic
imaging tasks and image denoising, where they help suppress artifacts such as white noise and salt-and-pepper
noise[17] [18]. Autoencoders contribute by compressing and reconstructing data, enabling anomaly detection, noise
reduction, and synthetic data generation, whichisespecially valuable whenlabeled datasets arelimited [19]. Generative
Adversarial Networks (GANSs) further enhance data augmentation and segmentation by generating realistic synthetic
images, although challenges such as instability and mode collapse persist; refined designs, including U-Net-based gen-
erators with adversarial and reconstruction loss, have achieved remarkable accuracy in breast thermography segmen-
tation [20] [21].

U-Netand Fully Convolutional Networks (FCNs) remain crucial for pixel-level predictions, with U-Net’sencoder—
decoder architecture and skip connections making it highly effective for medical image localization tasks, while FCNs
are more suited for broader semantic segmentation[22] [23]. Transfer learning has become indispensable in adapting
pre-trained models to specialized medical applications with limited annotated data, reducing training time while im-
proving diagnostic accuracy, and when combined with few-shot learning, it yields even greater performance gains[24]
[25]. Meanwhile, 3D Convolutional Neural Networks (3D-CNNs) expand the analysis to volumetric imaging such as
CT, MRI, and dynamic thermography, capturing both spatial and temporal dependencies with high precision [26] [27].
Finally, attention mechanisms mimic human cognitive focus by directing the model toward the most relevant regions
of input data, thereby improving feature extraction, enhancinginterpretability, and increasing diagnostic reliability [28]
[29]. Together, these deep learning approaches demonstrate a transformative role in medical imaging and hold partic-
ular promise for breast thermography-based cancer detection. Breast thermography as a method for early cancer detec-
tion has recently been explored and improved by researchersin various countries. A number of researchers' studies,
published in prestigious international journals, are reviewed here.

Tang et al., 2025 [30] presents a “multi-input lightweight CNN” called “Multi-light Nett” for more accurate early
detection of breast cancer. It combines thermal image from various angles with a lightweight CNN based on model
performance and scale. In addition, a novel weighted label smoothing regularisation (WLSR) is proposed for the Multi-
light Nett to improve the network's generalisation and classification accuracy. The experimental results show that the
proposed strategy, which combines front and side views, outperformsthetypicalapproach thatjust usesthe front view.
In addition, the Multi-light Nett outperforms the currently popular lightweight CNNs.

Attallah, 2025 [31] presented an innovative “computer-aided diagnosis” (CAD) system, “Thermo-CAD”, that uses
thermal imaging to detect early breast cancer.To improve accuracy, the system uses multiple convolutional neural net-
works (CNNs).Non-negative matrix factorisation and Relief-F are two approaches for integrating and reducing the di-
mensionality of deep data.The Thermo-CAD system was evaluated using two datasets: the DMR-IR, which distin-
guishes normal from diseased breast tissues, and a unique thermography dataset that distinguishes benign from ma-
lignant instances.The system achieved 100% accuracy on the DMR-IR dataset using the CSVM and MGSVM classifi-
ers.However, it demonstrated areduced capacity todiscriminatebetweenbenign and malignant patients, witha CSVM
accuracy of 79.3%.
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Bani Ahmad et al., 2025 [32] produced A new way to use deep learning to diagnose breast cancer was based on
thermography images. This method fixes some of the problems with mammograms, such as their cost and the radiation
they give off. The “Rock Hyraxes Dandelion Algorithm Optimization” (RHDAO) optimizes a thresholding value to
segment images after they havebeen preprocessed with CLAHE. StackVRDNet is a new deep learningarchitecture that
uses VGG16, ResNet, and DenseNet to do the classification. The RHDAOQOis used to improve the weightsand parameters
of these models, which makes them better at diagnosing. The model that came out of it was 97.05% accurate and
86.86% precise in simulations.

Veerlapalli and Dutta, 2025 [33] suggested combining a framework between a “Generative Adversarial Network”
and a “Hybrid Deep Learning” model as novel deep learning. to use thermogram images to detect breast cancer. The
proposed framework exceeds traditional deep-learning models by attaining a 98.56% accuracy rate, as validated
through experiments on the DMR-IR benchmark dataset. The goal is to raise the bar for diagnostic accuracy by combin-
ing important ROIs and using deep feature extraction to make classification better.

Alzahrani et al., 2025 [34] suggests an automated classification method that employs "convolutional neural net-
works" (CNNs) to distinguish between cancerous and normal thermographic breast images. An Enhanced Particle
Swarm Optimization (EPSO) method is employed to automatically optimize CNN hyperparameters, minimizing man-
ual effort and enhancing computational efficiency. To improve classification performance, the system uses advanced
image preprocessing methods like Mamdani fuzzy logic-based edge detection, “Contrast-Limited Adaptive Histogram
Equalization” (CLAHE) for improving contrast, and median filtering for reducing noise. The suggested framework has
a classification accuracy of 98.8 %, which isbetter than traditional CNN implementationsin terms of speed and accuracy.

Munguia-Siu et al., 2024 [35] Introduced hybrid “convolutional neural network-recurrent neural network” (CNN-
RNN) models for identifying tumor anomalies in dynamic breast thermography images. Five advanced pre-trained
CNN architectures were combined with three RNNs. The optimal hybrid architecture was VGG16-LSTM, exhibiting a
specificity of 98.68%, an accuracy of 95.72%, and a sensitivity of 92.76%, with a CPU runtime of 3.9 seconds. AlexNet-
RNN was the fastest model, with a CPU runtime of 0.61 s and performance of 92.76 % specificity, 68.52% sensitivity, and
80.59% accuracy, still outperforming stand-alone AlexNet. The findings show that “CNN-RNN" hybrid models perform
better than standalone CNN models, which means that dynamic breast thermographs can have their temporal data
recovered without a major impact on classifier runtime.

Hanieh et al., 2024 [36] examines the process of extracting features from a dataset of thermographic photographs
using a CNN technique. The initial stage was to use the CNN network to get a feature vector from the pictures. The
following stage is to use machine learning to sort the pictures. The study utilized four distinct classification methods to
identify breast cancer from thermographic images: KNN (94.1% accuracy), “fully connected neural network” (FCnet)
(94.2% accuracy), “support vector machine” (SVM) (95% accuracy), and “classification linear model” (CLINEAR) (95%
accuracy). Additionally, the sensitivity of these classifiers were determined to be 95.5% for FCnet , 94.1% for SVM ,
90.4%for CLINEAR, and 93.2% for KNN, while thereliability parameters were determined tobe 92.1% for FCnet, 97 5%
for SVM, 96.5% for CLINEAR, and 91.2% for KNN. These results can help experts create an expert approach for diag-
nosing breast cancer.

Shojaedini and Bahramzadeh, 2024[37] presentsaninnovative method that uses deep autoencoder ideas to remove
unnecessary or damaging information from synthetic thermograms while maintaining important and independent
properties. As a result, the suggested method improves the representation of artificial pictures for deep network train-
ing, which improves thermogram diagnosis of breast cancer. When compared to benchmark approaches, the suggested
method's performance on the DMR-IR dataset demonstrates a notable enhancement in thermogram detection of malig-
nant breasts. The basic model of the innovative integration, the average accuracy, sensitivity, and specificity increased
t092.3%, 93%, and 91.4%, respectively, exceeding the basic model's 89.1%, 86%, and 92.5%. reduced difference between
the training and validation curves showed that the suggested approach performed better at preventing over -fitting,
leading toa 7% gain in accuracy and a 3.2% increase in sensitivity. Even though the specificity decreased by 1.1%, other
parameter improvements exceeded.

Ahmed et al., 2024 [38] uses a pre-trained VGG16 convolutional neural network and transfer learning to suggest
deep learning (DL) model utilizing the most advanced technique. Thermal image from the (DMR-IR) Database for Re-
search are used by authors to train and assess the model. To enhance model performance, they also employ normaliza-
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tion and augmentation techniques. The DL-based model predicted BC lesions with a promising 99.4% (accuracy) detec-
tion rate. In comparison to earlier models, it has AUC-ROC of 99.8%, specificity of 97.5%, precision of 98.9%, F1-Score
of 99.8%, recall of 99%, and a sensitivity of 100%.

Al Husaini et al., 2024 [39] developed a system that improves breast cancer classification accuracy by using in situ
cooling support and preserving spatial features. The framework uses Deep Learning models and real-time thermogra-
phy video streaming to find breast cancer early. Inception v3, Inception v4, and a changed version of Inception Mv4
were all made with MATLAB 2019. However, a mobile phone was connected to a thermal camera to take pictures of
the breast area so that normal and diseased breast tissue could be told apart. The study's training dataset consisted of
1000 thermal photos, of which 300 were suitable for the abnormal classand 700 were deemed appropriate for thenormal
breast thermography class. The Deep Convolutional Neural Network models that are tested include Inception version
3 (v3),Inception version 4 (v4),and a modified version called modified Inception version 4 (Mv4). The results show that
Inception Mv4 can accurately identify even the smallest temperature differences in breast tissue sequences in real time,
with an accuracy of 99.748%. Inception version 3 and Inception version 4, on the other hand, had accuracies of 96.8%
and 99.712%, respectively. The in situ cooling gel used for thermal imaging made breastimaging more effective. A 0.1%
rise in tumor surface temperature led to a 7% rise in accuracy for detection and classification.

Mohammed Jawad Khudhur, 2024[40] suggests employing an improved “Deep Convolutional Neural Network”
(DCNN) to detect and diagnose breast cancer early and accurately. Researcher employs a DCNN with 12 stacked pro-
cessing layers, enhancing diagnostic and detection accuracy compared to prior methodologies. The Mini Mammo-
graphic Database (MIAS) serves as the dataset for assessing the efficacy of the proposed system. The findings indicate
that the Deep CNN achievesanimpressiveaccuracyof99.1%. The advantagesof the proposed DCNN-based approach
are demonstrated through a comparison with analogous studies.

Dihmani et al., 2024 [41] proposed a “computer-aided diagnostic” (CAD) scheme utilizing thermal imaging for
breast cancer diagnosis and Explainable Artificial Intelligence. To enhance classification accuracy and interpretability,
theauthorsemployed a distinctive approachutilizing metaheuristicalgorithms, specifically the “Hybrid Particle Swarm
Optimization” (HPSO) and “Hybrid Spider Monkey Optimization” (HSMO). These strategies improved both feature
selectionand hyperparametertweakingin the CAD system. Techniquesemployed for feature extractionincluded Gabor
filters, “Histogram of Oriented Gradients” (HOG), “Local Binary Patterns” (LBP), and Canny edge detection. To en-
hance diagnostic accuracy, “dynamic infrared thermography” (DIT) images under controlled cooling conditions were
incorporated into the “DMR-IR dataset”. The model achieved high performance metrics utilizing a 70-30 train-test split
of patientimages. Utilizing the HSMO, the system effectively identified cancerous tissues by thermographicanalysis,
attaining an F1-score of 98.15% and an accuracy of 98.27%, while selecting just 25.78% of HOG characteristics.

Da Silva et al.,, 2024 [42] uses thermographic images and “convolutional neural networks” to tell the difference
between breast cancer and other types of cancer. To do this, two methods are compared: one uses CNNs to get the
original feature vectors, and the other uses Particle Swarm Optimization to make the vectors smaller for feature selec-
tion. The results show that both strategies work very well. The highest accuracy of 79.92% was achieved using full
feature vectors with the Inception V3 convolutional neural networks (CNN) and a support vector machine with a third-
degree polynomial kernel. The Inception V3 CNN combined with a support vector machine using y = 0.25 for the RBF
kernel achieved the highest sensitivity and specificity scores, recording 100% sensitivity and 99.49% specificity. The
same combination produced the highest AUC, which was 0.83. Using the Inception V3 CNN with a 4th-degree polyno-
mial kernel and PSO-selected features, the highest accuracy was 78.55%.

Nigam and Swarnkar, 2024 [43] suggested approach advocates for a deep learning methodology, specifically Con-
volutional Neural Networks (CNNSs), for the detection of breast cancer. The goal was to create a CNN-based model for
diagnosing breast cancer that could tell the difference between benign (non-cancerous) and malignant (cancerous) tu-
mors. The study aimed to enhance the accuracy of early diagnosis, which is essential for effective treatment. authors
used the “Discrete Wavelet Transform” (DWT) to analyze the images, and we made the images clearer and less noisy
to make featureextractionmoreaccurate. Theimages were classified aseither benign or malignantusinga CNN model,
and the effectiveness of different classifiers —Support Vector Machine, Logistic Regression, and Random Forest —was
compared. The proposed model identified both benign and malignant cases with an accuracy of up to 85%.

Ahmadetal., 2024 [44] suggested a “computer-aided diagnostic” (CAD) system based on deep learning that would
make it easier to find breast cancer by finding and classifying tumors. authors used advanced technologies like Breast-
Net-SVM for classification, Associat-ed-ResUNets for hashing, and YOLO networks for detection. Researchers showed
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that the system could do better than other technologies by getting 98.5% of tumors detected correctly and 99.16% of
tumors classified correctly.

Wang et al., 2024 [45] proposed a novel model termed “DeepClinMed-PGM”, which stands for “Deep Learning
Clinical Medicine Based Pathological Gene Multi-modal”, designed to predict DES by integrating “clinicopathological
data with molecular insights”. The external testing group had 95 people, the internal validation group had 184 peo-
ple, and the training group had 741 people. = The AUC values for 1-, 2-, and 3-year DFS predictions were 0.851, 0.878,
and 0.938 in the external cohort and 0.979,0.957, and 0.871 in the training cohort. Strong dis-criminative skills were
shown by the external cohort (HR 0.061,95% CI 0.017-0.218, P < 0.0001), internal validation cohort (HR 0.117,95% CI
0.041-0.334, P <0.0001), and training cohort (HR 0.027, 95% CI 0.0016-0.046, P <0.0001). The C-index scores were 0.864,
0.823, and 0.925.

Tsietso et al., 2023 [46] demonstrate a tool called thermal infrared-based “computer-aided diagnosis” (CADx) that
is cheaper, safer, and better for kids. Most “CADx” systems use frontal breast thermograms, so they probably won't
find lesions that grow on the sides. These systems also often miss important clinical data, like risk factors. The author
introduces an innovative CADx system for breast cancer detection utilizing deep learning methodologies. The system
has a lot of different viewsof thebreast thermogram and the clinical information that goes with it to make the diagnosis
more accurate. The author explains how the system works, such as how transfer learning is used to train three different
models and how regions of interest are found in photos. The results show that multi-input models arebetter than single-
input models. They have an AUROC curve of 0.94, a sensitivity of 93.33%, and an overall accuracy of 90.48%.

Husainiet al., 2023 [47] suggests a method for the early diagnosis of breast cancer that makesuse of “deep learning
models and real-time thermography video streaming”. The framework uses “Inception v3”, “v4”, and a “modified In-
ception Mv4” of deep convolutional neural network models to classify normal and abnormal breasts. It is implemented
in MATLAB 2019 with infrared camera and records high-quality real-time video streams. The findings show that the
Inception Mv4 model can efficiently identify even the smallest temperature differencesin tissue of the breast by pro-
ducing a series of infrared image taken from various perspectives when paired with real -time video streaming. Adding
cooling gel to thebreast area makes the contrast evenbetter, which helps with accurate detection and an effective picture
acquisition process. In addition, the study shows that a small rise in the temperature of the tumor surface area of 0.1%
can lead to an average gain of 7% in detection and classification accuracy.

Ali et al.,, 2023 [48] introduces the “Enhanced Channel-Wise Attention Mechanism” (ECAM), a deep learning ana-
lysis tool for “breast invasive ductal carcinoma” (BIDC) histopathology images. The study's primary objectives are to
augment computational efficiency by employing a separable Convolutional Neural Networks architecture, toimprove
data representation via hierarchical feature aggregation, and to enhance accuracy and interpretability through channel -
wise attention mechanisms. The developed ECAM model was compared to DenseNet121, VGG16, and AlexNet using
two publically available datasets, BreakHisand DataBioXIDC. On the IDC dataset, the proposed ECAM model obtained
an F1-score of 96.65% and an exceptional accuracy rate of 96.70%. Once again, the proposed ECAM model performed
exceptionally well on the BreakHis dataset, with an accuracy rate of 96.33% and an F1-score of 96.37%.

Khanet al., 2023 [49] suggest a thermalimaging-based model to identify breast cancer. Create a personalized CNN-
based machine learning model that has been trained on different thermal image datasets showing breast problems. Use
thermal image processing algorithms to predict breast cancer based on outside signs. To find images that cause cancer,
segmentation, texture-based feature extraction, and image classification are used. Use 2D CNNs and activation algo-
rithms to mix ResNet with parts of GoogleNet to make a custom classifier. Add layers for maxpooling and batch nor-
malization. Use DMR-IR imagesto teachthemodel. The proposed 2D CNN classifiers surpassed CNN (71%) and SVM
(91%), attaining a 95% classification rate.

Alshehri and AlSaeed, 2023 [50] proposed a novel approach for breast cancer diagnosis that integrates deep atten-
tion mechanisms (AMs) in thermal imaging with pre-trained VGG16 convolutional neural networks. Three different
kinds of AMs were used to make the classification more accurate and the feature extraction process better: hard atten-
tion, self-attention, and soft attention. The authors used the DMR-IR dataset, which had “1542 thermal images” of 56
patients' breasts. Of these, 762 showed malignant cases and 780 showed healthy cases. To get around the limits of the
dataset, data augmentation techniques were used to make a bigger dataset with 4146 photos. The VGG16 model with
hardattentionhad thehighest accuracyat 99.80%, followed by self-attentionat 99.49% and soft attention at 99.32%. This
method performed better than previous research, demonstratinghow AMs can greatly improve thermal imaging for
breast cancer diagnosis.
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Torres-Galvan et al., 2022 [51] proposed “automatically classify thermograms as normal and abnormal using a
deep convolutional neuralnetwork with transferlearning” model . A sample of “311 females” subjects was used to test
the CNN's performance in two ways: one in a typical screening co-hort with a low number of unusual thermograms,
and the other with a balanced class distribution. The transfer-learned ResNet-101 model exhibited a sensitivity of
92.3% and a specificity of 53.8%. In contrast, the corresponding values were a sensitivity of 84.6% and a specificity of
65.3%, characterized by an imbalanced distribution. archived accuracy of balanced class is 73.1% and unbalanced class
is 74.9%.

Mammoottil et al., 2022 [52] demonstratesa “convolutional neural network”-based model that uses the Visual
DMR dataset toidentify breast cancer by utilising several thermal images of the breast. The clinical datais then used to
confirm these models' performances. Results show that the model's performance improved when clinical data judge-
ments were added. The model that had the same architecture for all three views fared the best after two models with
different architectures were constructed and tested. With the addition of the clinical data decision, its accuracy rose
from 85.4% to 93.8%. When selecting sick patients as the positive class, the model was able to classify more patients
properly with a sensitivity of 88.9 % and specificity of 96.7% after adding clinical data decisions.

Mohamed et al., 2022 [53] suggest a method that detects breast cancer entirely automatically. Initially, the breast
region is automatically separated and isolated from the rest of the body that acts as noise in the detection model of
breast cancer, using the U-Net network. Second, author provides a two-class deep learning model for the categorisation
of normal and pathological breast tissues using thermal pictures. This model is trained from scratch. Additionally, it is
employed to extract additional features from the dataset thataid in network training and enhance classification process
efficiency. When tested on database (DMR-IR), the suggested system obtained 99.33 % accuracy, 100% sensitivity, and
98.67% specificity.

Ensafiet al., 2022 [54] propose a novel method for combining many thermography imaging views to enhance the
diagnosis of breast cancer. The technique uses pre-trained deep learning architectures with transfer learning to merge
frontal-45, lateral-45, and lateral views of thermal images. Improving these algorithms' ability to identify breast cancer
was the aim. In comparison to existing deep learning or handcrafted methods, the suggested method produced a spec-
ificity increase of 2-30%and a sensitivity increase of 2-15%. In particular, compared to using only the frontal view, the
sensitivity increased to 2 and the specificity reached 1 when lateral views were included. The suggested approach per-
formed atleast2% better in terms of sensitivity and specificity than alternativeswhen it cameto differentiatingbetween
healthy and malignant tissues.

Dey et al., 2022 [55] suggest system to detect breast cancer that can identify the disease by using thermal breast
imaging. Here, the author builds a classifier for the stated objective by using the DenseNet121 pre-trained model to
extract the feature. The author work with the original thermal image of breast to obtain outputs utilising two edge
detectors, Prewitt and Roberts, prior to feature extraction. The original image and these two edge-maps combine to
form the DenseNet121 model's 3-channel input. the model's performanceis assessed using the “Database for Mastology
Research (DMR-IR)”, a collection of thermal breast images. On the aforementioned database, the author achieved
98.80% as highest classification accuracy.

Aidossov et al., 2022 [56] Develop CNN methods to diagnose breast tumours with intelligence and precision. Breast
thermogramsobtained from a multicenter database were used for binary classification without any preprocessing is the
work's primary innovation. The findings in this research demonstrate the effectiveness and use of deep learning for
thermogram standardisation. It is discovered that the constructed model can achieve 80.77% accuracy, 44.44% sensitiv-
ity, and 100% specificity.

Alshehri and AlSaeed, 2022 [57] Assess the degree to which attention mechanisms (AMs) combined with convo-
lutional neural networks (CNNs) can produce adequate detection outcomes for thermal breast cancer photos. The au-
thors use thermal pictures from the Database (DMR-IR) to demonstrate a deep neural network-based breast cancer
detection model with AMs. The model's accuracy, sensitivity, and specificity will be assessed, and it will be contrasted
with the most advanced techniques for detecting breast cancer. On the breast thermal dataset, the AMs using the CNN
model had positivetestaccuracyratesof 99.46%,99.37%, and 99.30%. CNNswithout AMs had a testaccuracy of 92.32%,
but CNNs with AMs improved their accuracy by 7%.

Houssein et al., 2021 [58] suggested a novel and effective version of the well-known chimp optimization technique
(ChOA): the opposition-based Lévy Flight chimp optimizer (IChOA). Opposition-based learning (OBL) is used to ex-
pand the population variety of ChOA, while the Lévy Flight is used to improve its exploitation. The IChOA is used to
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solve the picture segmentation problem using multilevel thresholding. The Otsu and Kapur techniques were used to
test the method on the DMR-IR database. It was then compared to seven other meta-heuristic algorithms: ChOA, SSA,
SCA, WOA, MFO, GWO, and EO.  When it came to separating different positive and negative examples, IChOA did
better than its competitors in terms of accuracy, consistency, quality, and evaluation matrices like FSIM, SSIM, and
PSNR.

Zadeh et al., 2021[59] proposed a novel approach to breast cancer diagnosis that extracts features from thermal
imaging using a dynamic segmentation model and classifies data using a deep autoencoder neural network. The
method employs a semi-automated procedure to identify breast areas according to their morphological characteristics
by extracting eight statistical factors from thermography images. An unsupervised deep-learning autoencoder pro-
cesses these traits to tell the difference between cancerous and healthy tissues. The authors achieved an impressive
accuracy rate of 94.87% and a specificity of 96.77% by validating their method on a dataset of 196 individuals. This
demonstrated the model's capability to accommodate various breast morphologies and accurately identify anomalies.

Ucuzal et al., 2021 [60] designed a system using pre-trained networks to classify breast cancer from thermographic
images. The dataset, which was converted from.txt to.jpeg format, contained 179 healthy images and 101 patients
(source: http://visual.ic.uff.br/dmi/). After testing a number of pre-trained models, ResNet50V2 produced the best ac-
curacy, 99.6%. Medical professionals can now more effectively detect breast cancer thanks to an interface designed asa
computer-aided diagnosis tool.

Sanchez-Ruizet al., 2020 [61] suggested approach divides the area of interest using statistical operators, local op-
erations, and overlap. First- and second-order statistics are then used to extract features. These characteristics are then
used to train an artificial neural network (ANN). The approach produced competitive accuracy values ranging from
90.17% to0 98.33% when tested on a popular image database. The study addresses the drawbacks of conventional mam-
mography and emphasizes the benefits of breast thermography as a low-cost, non-invasive screening method. The out-
comes demonstrate how well the suggested approach works to increase the precision of thermograph-based breast
cancer detection.

Silvaet al., 2020 [62] suggest a computational approach that uses supervised and unsupervised machine learning
approaches to analyses breast dynamic image of thermography infrared in order to identify patients for breast abnor-
malities. A benign tumor or a malignant tumor (cancer) might be an anomaly. The author uses accuracy, sensitivity,
specificity, and the area under the ROC curve as performance metrics. With an accuracy of 98.57%, the K-Star classifier
produces the best results. The findings support the suggested method's potential for screening patients for breast ab-
normalities.

Ekici and Jawzal, 2020 [63] Develop system for automatic breast cancer detection that analyses thermal breast
photos using image processing methods and algorithms to find illness indicators, enabling early breast cancer identifi-
cation. Anovel approach based on bio-data, image statistics, and image analysis is put forth for the extraction of breast
distinctive features. CNNs optimised by the Bayes algorithm will be used for breast image classify as suspicious or
normal based on these attributes that were retrieved from the thermal images. The accuracy rate of the suggested ap-
proach was 98.95% for the thermal pictures in the dataset that included 140 people.

Khomsi et al., 2020 [64] presents a new way to use superficial thermography to find breast cancer early. The
authors conceptualized thebreast as a multi-layered structure exhibiting varying thermal properties and utilized COM-
SOL Multiphysics software to simulate temperature gradients induced by tumors within breast tissue. To test these
models in a lab, they made a breast imaging phantom out of organic materials that simulate the thermal and physical
properties of real tissue. They put heat sources in different places and depths to make tumors. A heating control system
kept the temperature of these model tumors at a certain level. Thermography is a potential non-invasive and affordable
method for early breast cancer detection, as evidenced by the results showing that thermographic devices could accu-
rately detect minute temperature changes on the surface.

Comparative Summary of Reviewed Studies

This section gathers all of the studied studies into a structured comparison to provide a better understanding of
the various studies. Table 2 compiles datasets, methods, advantages, disadvantages, and evaluated performance.

Note: The "Results" column shows a summary of other performance measureslike sensitivity, specificity, precision,
and F1-scores. Accuracy values are shown in a separate column.
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Table 2: Comparative Summary
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6. Discussion

The reviewed research demonstrate that deep learning has considerably improved the use of “thermal imaging”

for breast cancer detection. The reported findings are consistently high, with most investigations obtaining accuracy

above 90% and some nearing 100%. Transfer learningarchitectures, suchas “VGG”, “ResNet”,and “Inception”, arestill

the most popular methods, but more recent advancements involve attention mechanisms, hybrid CNN-RNN models,

409

410
411
412
413



Dasinya Journal for Engineering and Informatics. 2025,1, 5. 14 of 19

and optimization-assisted frameworks. These approaches often outperform classic CNNs, highlighting the significance
of model architectures and preprocessing methodologies in enhancing diagnostic outcomes.

Figure 2 shows the reported accuracies for each reviewed study from 2020 to 2025, ranked from highest to lowest.
Almost all of trials obtained performance levels above 90%, with a few exceeding 99%. However, some research that
used simpler CNNss or smaller datasets found more modest results, ranging from 75 to 85%. This distribution demon-
strates the significant impact of dataset quality, class balance, and methodology design on reported findings.
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Figure 2: Accuracy reported by each reviewed study (2020-2025), sorted from highest to lowest

Figure 3 categories results by technique and displays the average accuracy achieved across categories. Transfer
learning techniques, attention-based CNNs, and hybrid models clearly outperform traditional CNNs and handmade
approaches, with mean accuracies that are consistently higher. This illustrates how innovation in architecture design,
particularly by the use of pre-trained models, the addition of attention mechanisms, or the combination of spatial and
temporal modelling, immediately translates into improved classification reliability.
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Average Accuracy by Deep Learning Technique
100

95
3
~ 90
Q
c
-
g 8
<
f =
o 80
=
75
70
c,\ ‘:\\: 9 0O A & & D S v <2 N 2 O &
PSS IS IS ECFT LI STSTFES S NP F TS L
\;‘; x-s -é@ K,\(‘?S\é"- 6"’959 D XY XY B 4 "@Q’Q‘t\"q,or\ 2 Qc,«@S‘Qox z),\(o"/\@(\
S @ & T I FI e 050 F T T & &S
o & d & N & QS s x & (¥ S e 8 T HF TS T
R C R NS N & SR R O C AN RN S ) G OO I
WS & * = EF S < RO * S &
&K K\ & & RS PN & &« S
& o > 2 [e; 9 <€
34 &
o
&
Technique

Figure 3: Average accuracy categories by deep learning technique across reviewed studies.

Even though these results are very good, there are some limits that need to be acknowledged. First, the heavy
reliance on the DMR-IR dataset in many studies makes it hard to apply the results to other situations. When models are
tested on photos from other schools or devices, high claimed accuracies may not be a good indicator of how well they
workin the real world. Several studieshave shown high accuracies (299 %), which should be viewed with caution. These
kinds of results are often made with small or unbalanced datasets and without outside validation. These factors can
artificially enhance performance while constraining clinical utility. Third, while generative models like GANs can solve
data scarcity by creating synthetic thermogrames, their use is limited due to training instability and computational cost.
Similarly, real-time or multi-view thermography systems show promise, but they require larger and more diversified
datasets for reliable validation.

Overall, the literature shows that Al-driven thermography has a lot of potential as a non-invasive and cheap way
to findbreast cancer early, but more researchisneeded beforeit canbe used in reallife. Future endeavors must prioritize
the development of larger, standardized, and multi-institutional datasets, the implementation of external validation
processes, and the publication of clinically relevantmetrics such as sensitivity, specificity, and AUC, alongside accuracy.
Also, looking into underused methods like GANs for data augmentation, hybrid “CNN-RNNs” for dynamic thermog-
raphy, and attention mechanisms that make it easier to extract features could be helpful. Addressing these limitations
will bring the field closer to developinga reliable, explainable, and clinically trusted framework for breast cancer screen-
ing.

7. Conclusion

The study emphasizes the growing potential for enhancing early breast cancer detection by fusing deep learning
methods with breast thermography. Models which include CNNs, GANs, U-Net, and transfer learning continuously
demonstrated high accuracy, sensitivity, and specificity in interpreting thermal images in the research that was exam-
ined. These technologies offer a strong substitute for traditional imaging techniques, especially when non-invasiveness,
affordability, and accessibility are crucial considerations. The path to clinical adoption presents several challenges. Nu-
merous studies utilize small or imbalanced datasets, and variations in imaging techniques may hinder model generali-
zability. Furthermore, while AI models demonstrate promise, their interpretability and incorporation into real-world
diagnostic procedures require additional refinement.

Future research should emphasize the creation of standardized, diverse thermographic datasets, explore multi-
modal imagingmethodologies, and enhance Al models for transparency and clinical reliability. Ongoing researchand
collaboration between the medical and technical sectors may render Al-enhanced thermography a feasible and scalable
instrument for global breast cancer screening.
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