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Abstract 8

Breast cancer is an alarming worldwide health concern, and early detection is crucial for 9

improving patient outcomes. This study explores the application of deep learning algo- 10

rithms in breast thermography, a non-invasive and radiation-free imaging technique, to 11

enhance diagnostic accuracy.  This research synthesizes peer-reviewed literature from 12

2020 to 2025, focusing on various deep learning architectures, including CNNs, GANs, 13

RNNs, U-Net, and transfer learning, in relation to thermographic datasets like DMR-IR 14

and Visual DMR. The methodology employs a structured approach encompassing litera- 15

ture searches, criteria for inclusion and exclusion, data extraction, and synthesis. The find- 16

ings indicate that deep learning significantly enhances segmentation, classification, and 17

anomaly detection in thermal breast images, frequently surpassing traditional diagnostic 18

techniques. While accuracy rates are promising, challenges persist, such as limitations in 19

datasets, variability in images, and a lack of standardization. This study highlights the 20

potential of AI-enhanced thermography as a cost-effective and scalable method for breast 21

cancer screening, while also identifying key areas for further research to enhance gener- 22

alizability and clinical application. 23

24

Keywords: Deep Learning, Breast Thermography, Thermal Imaging, Breast Cancer De- 25

tection, Medical Imaging 26

27

1. Introduction 28

The global rate of cancer continues to be high worldwide in recent years. Tens of millions of individuals receive a 29

new cancer diagnosis every year. Suffering from cancer also claims the lives of millions, if not tens of millions, of indi- 30

viduals every year across the entire world. [1]. “According to the WHO, female breast cancer accounts for 11.6% of all 31

new cases, with 2.3 million instances, placing it as the world's second most prevalent cancer after lung cancer” [2]. Most 32

patients with breast cancer are already at an advanced stage, which contributes to the high death rate from the disease. 33

If breast cancer is detected at stage I without the cancer cells invading the lymph nodes, the cure rate is 80 –90%[3]. 34

Overall, tumors larger than 30 mm are seen in 70% of instances of breast cancer. Because breast cancer can manifest 35

in a variety of ways, a comprehensive medical checkup is necessary. Consequently, reducing disease-related mortality 36

relies on early detection and periodic exams [4]. Standard testing should be conducted on women who demonstrate 37

persistent anomalies lasting one month or longer. The two most popular techniques for breast screening are mammog- 38

raphy and clinical breast examination [5]. However, thermography is currently another screening method that can be 39

employed. Thermal imaging assists in recognizing cancer by using an infrared camera to capture heat map images of 40
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the target surface of breast. Recent developments in technology have made it possible to use thermography for screening 41 

processes with the aid of machine learning[6] [7].  42 

The focus of intense research in computer vision and artificial intelligence is the employ of deep learning technol- 43 

ogy to diagnose cancer from medical image. In addition to the intrinsic particularity and complexity of medical imaging, 44 

cancer detection demands extremely high accuracy and timeliness due to the rapid development of deep learning tech- 45 

niques [8]. A comprehensive review of relevant works is essential to assist readers in understanding the current status 46 

of research and ideas more clearly. This review aims to study the techniques of deep learning to detect breast cancer 47 

through breast thermography. Compared with other methods such as radiography and ultrasound, breast thermogra- 48 

phy is low-cost, less harmful, and shows high accuracy compared to previously existing methods. Through the review 49 

conducted, breast cancer detection methods show high accuracy by applying deep learning techniques to breast ther- 50 

mography. The organized rest of this review paper is presented as follows: The methodology is outlined in Section 2. 51 

Section 3 is basic information about breast cancer detection. While, Section 4 discusses breast thermography in cancer 52 

detection. Section 5 reviews the most important literature reviews and comparative summary of the reviewed literature 53 

during the five years related to the topic of this research paper. Sections 6 discussion of what was summarized. Finally, 54 

there is a conclusion in Section 7. 55 

2. Methodology 56 

This review followed a structured and transparent methodology to identify, screen, and synthesize recent works 57 

on the use of thermography and deep learning techniques for breast cancer detection between 2020 and 2025. Several 58 

academic databases, including Scopus, Google Scholar, IEEE Xplore, PubMed, and ScienceDirect, were extensively 59 

searched using keywords and Boolean combinations such as “breast thermography,” “deep learning,” “thermal imag- 60 

ing,” “convolutional neural network,” “DMR-IR dataset,” and “breast cancer detection,” while references from major 61 

papers were also reviewed to locate additional sources.  62 

Studies were included if they employed breast thermography as the imaging modality, utilized state-of-the-art 63 

machine learning and deep learning methods such as autoencoders, CNNs, or transfer learning, and reported quanti- 64 

tative performance metrics such as accuracy, precision, specificity, sensitivity, or balanced accuracy. Only peer -re- 65 

viewed journal and conference papers published between 2020 and 2025 were considered, while studies based on other 66 

imaging modalities (e.g., mammography, ultrasonography), works focusing purely on hardware development without 67 

algorithmic evaluation, and grey literature such as theses or preprints were excluded.  68 

From each eligible study, the year of publication, dataset used (e.g., DMR-IR, Visual DMR, multicenter thermo- 69 

grams), deep learning technique (e.g., CNN, U-Net, ResNet, VGG, DenseNet, autoencoder, attention mechanism), eval- 70 

uation metrics, and key findings and limitations were extracted. The synthesis of findings indicated that deep learning 71 

considerably enhances the performance of breast thermography for cancer diagnosis, with CNNs, GANs, U-Nets, and 72 

transfer learning models applied to DMR-IR and Visual DMR datasets consistently achieving strong results in classifi- 73 

cation and segmentation tasks. Hybrid models and data augmentation strategies further improved robustness, while 74 

transfer learning proved especially effective with limited datasets. Despite these promising outcomes, challenges such 75 

as small dataset sizes, inconsistent imaging methodologies, and low generalizability remain, highlighting the need for 76 

standardized datasets, transparent models, and stronger validation protocols to advance AI-enhanced thermography 77 

toward clinical adoption. 78 

According to the reviewed studies, deep learning considerably improves breast thermography for cancer diagno- 79 

sis. Using the DMR-IR and Visual DMR datasets, CNNs, GANs, U-Nets, and transfer learning models consistently 80 

achieved good results in classification and segmentation tasks. While hybrid models and augmentation strategies en- 81 

hanced robustness, transfer learning was especially effective with less data. 82 

Challenges continue even though there were positive results. Clinical adoption is hindered by small datasets, in- 83 

consistent imaging methodologies, and low generalizability.  Results highlight the need for more consistent datasets, 84 

more transparent models, and stronger validation to pave the way for AI-enhanced thermography to be used in the real 85 

world. 86 

 87 

 88 

 89 
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3. Breast Cancer Detection Background 90 

    Among women worldwide, breast cancer continues to be the most prevalent cancer. and it poses a serious 91 

threat to modern society. Timely identification of breast cancer has the ability to significantly improve the lives of innu- 92 

merable people who are at risk globally. Age, history of family, and reproductive variables are the most significant risk 93 

factors for breast cancer. Furthermore, although there is currently little evidence to draw firm conclusions, hormonal 94 

factors and contemporary lifestyle choices are related to a higher risk of breast cancer in women. The variables that 95 

affect the risk of breast cancer are listed in Table 1 by [9] P. Wang, J. Chen, and W. Zhao. The possibility of a successful 96 

course of therapy and survival is significantly increased when breast cancer is detected early. Here are a few methods 97 

for identifying breast cancer. 98 

Table 1: Categories of breast cancer risk factors and their roles 99 

Category Protective Role Risk-Increasing Role Uncertain / Debated 

Demographic – Female gender, Advanced age – 

Reproductive 
Full-term pregnancy, Early 

first childbirth 

Late menopause, Nulliparity, 

Abortion 

Age at menarche, Men-

strual cycle regularity 

Hormonal – 
Postmenopausal hormone ther-

apy, Ovulation-inducing drugs 

Contraceptive methods, 

Pregnancy-related hor-

mones 

Hereditary – 
Family history of breast cancer, 

Inherited genetic mutations 
– 

Breast-related – 
High breast density, Benign 

breast disorders 
Shorter lactation duration 

Lifestyle 

Regular physical activity, 

Healthy diet, Adequate vita-

min D 

Alcohol intake, Smoking, Obe-

sity/overweight 

Coffee consumption, Sleep 

duration 

Environmen-

tal / Other 
– 

Radiation exposure, Diabetes, 

Air pollution 

Night-shift work, Low so-

cioeconomic status 

 100 

4. Breast Thermography in Cancer Detection 101 

As a complement for the early detection of abnormalities in the female breast, thermography measures the tem- 102 

perature of the breast area as the heat radiated to the environment by the skin surface. [9]. Through the transformation 103 

of radiation intensity, ”a thermographic camera generates a thermogram, which is shaped by the temperatures arranged 104 

in a two-dimensional array” [10]. Figure 1 shows the entire workflow of the above method. 105 

 106 

Figure 1 : process of breast thermography for the screening of malignancy cancer 107 
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Because each area is influenced by both endogenous and exogenous factors, the temperatures that each breast 108 

projects are not consistent. Tumors distort vascularization, which causes localized temperature changes that are trans- 109 

ferred to the skin's surface.  Breast thermography depends on evaluating these thermographic images to detect tissue 110 

abnormalities early in order to lessen the suffering and death rate from breast cancer [11]. Additionally, thermograms 111 

have been used as datasets to perform image processing tasks, such as segmentation, feature extraction, and classifica- 112 

tion [12]. In 2014, Da Silva et al. “published accessible via Federal Fluminense University the first public database of 113 

breast thermography images, marking a significant milestone” [13].  114 

5. Literature Review 115 

Deep learning has revolutionized medical image analysis by providing highly accurate, flexible, and generalizable 116 

models compared to traditional mathematical and signal-processing approaches[14] [15] . Convolutional Neural Net- 117 

works (CNNs) are the most widely applied, as they can automatically extract hierarchical features from input data and 118 

have proven effective in classification, segmentation, and anomaly detection, particularly in breast cancer detection 119 

where they often outperform conventional methods [16]. Recurrent Neural Networks (RNNs) and Long Short-Term 120 

Memory (LSTM) networks extend this capability to sequential and temporal data, making them useful for dynamic 121 

imaging tasks and image denoising, where they help suppress artifacts such as white noise and salt -and-pepper 122 

noise[17] [18]. Autoencoders contribute by compressing and reconstructing data, enabling anomaly detection, noise 123 

reduction, and synthetic data generation, which is especially valuable when labeled datasets are limited [19]. Generative 124 

Adversarial Networks (GANs) further enhance data augmentation and segmentation by generating realistic synthetic 125 

images, although challenges such as instability and mode collapse persist; refined designs, including U-Net–based gen- 126 

erators with adversarial and reconstruction loss, have achieved remarkable accuracy in breast thermography segmen- 127 

tation [20] [21].  128 

U-Net and Fully Convolutional Networks (FCNs) remain crucial for pixel-level predictions, with U-Net’s encoder– 129 

decoder architecture and skip connections making it highly effective for medical image localization tasks, while FCNs 130 

are more suited for broader semantic segmentation[22] [23]. Transfer learning has become indispensable in adapting 131 

pre-trained models to specialized medical applications with limited annotated data, reducing training time while im- 132 

proving diagnostic accuracy, and when combined with few-shot learning, it yields even greater performance gains[24] 133 

[25]. Meanwhile, 3D Convolutional Neural Networks (3D-CNNs) expand the analysis to volumetric imaging such as 134 

CT, MRI, and dynamic thermography, capturing both spatial and temporal dependencies with high precision[26] [27]. 135 

Finally, attention mechanisms mimic human cognitive focus by directing the model toward the most relevant regions 136 

of input data, thereby improving feature extraction, enhancing interpretability, and increasing diagnostic reliability [28] 137 

[29]. Together, these deep learning approaches demonstrate a transformative role in medical imaging and hold partic- 138 

ular promise for breast thermography-based cancer detection. Breast thermography as a method for early cancer detec- 139 

tion has recently been explored and improved by researchers in various countries. A number of researchers' studies, 140 

published in prestigious international journals, are reviewed here.     141 

Tang et al., 2025 [30] presents a “multi-input lightweight CNN” called “Multi-light Nett” for more accurate early 142 

detection of breast cancer. It combines thermal image from various angles with a lightweight CNN based on model 143 

performance and scale. In addition, a novel weighted label smoothing regularisation (WLSR) is proposed for the Multi- 144 

light Nett to improve the network's generalisation and classification accuracy. The experimental results show that the 145 

proposed strategy, which combines front and side views, outperforms the typical approach that just uses the front view. 146 

In addition, the Multi-light Nett outperforms the currently popular lightweight CNNs. 147 

Attallah, 2025 [31] presented an innovative “computer-aided diagnosis” (CAD) system, “Thermo-CAD”, that uses 148 

thermal imaging to detect early breast cancer.To improve accuracy, the system uses multiple convolutional neural net- 149 

works (CNNs).Non-negative matrix factorisation and Relief-F are two approaches for integrating and reducing the di- 150 

mensionality of deep data.The Thermo-CAD system was evaluated using two datasets: the DMR-IR, which distin- 151 

guishes normal from diseased breast tissues, and a unique thermography dataset that distinguishes benign from ma- 152 

lignant instances.The system achieved 100% accuracy on the DMR-IR dataset using the CSVM and MGSVM classifi- 153 

ers.However, it demonstrated a reduced capacity to discriminate between benign and malignant patients, with a CSVM 154 

accuracy of 79.3%. 155 
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Bani Ahmad et al., 2025 [32] produced A new way to use deep learning to diagnose breast cancer was based on 156 

thermography images. This method fixes some of the problems with mammograms, such as their cost and the radiation 157 

they give off. The “Rock Hyraxes Dandelion Algorithm Optimization” (RHDAO) optimizes a thresholding value to 158 

segment images after they have been preprocessed with CLAHE. StackVRDNet is a new deep learning architecture that 159 

uses VGG16, ResNet, and DenseNet to do the classification. The RHDAO is used to improve the weights and parameters 160 

of these models, which makes them better at diagnosing.  The model that came out of it was 97.05% accurate and 161 

86.86% precise in simulations. 162 

Veerlapalli and Dutta , 2025 [33] suggested combining a framework between a “Generative Adversarial Network” 163 

and a “Hybrid Deep Learning” model as novel deep learning. to use thermogram images to detect breast cancer.  The 164 

proposed framework exceeds traditional deep-learning models by attaining a 98.56% accuracy rate, as validated 165 

through experiments on the DMR-IR benchmark dataset. The goal is to raise the bar for diagnostic accuracy by combin- 166 

ing important ROIs and using deep feature extraction to make classification better . 167 

Alzahrani et al., 2025 [34] suggests an automated classification method that employs "convolutional neural net- 168 

works" (CNNs) to distinguish between cancerous and normal thermographic breast images. An Enhanced Particle 169 

Swarm Optimization (EPSO) method is employed to automatically optimize CNN hyperparameters, minimizing man- 170 

ual effort and enhancing computational efficiency. To improve classification performance, the system uses advanced 171 

image preprocessing methods like Mamdani fuzzy logic-based edge detection, “Contrast-Limited Adaptive Histogram 172 

Equalization” (CLAHE) for improving contrast, and median filtering for reducing noise. The suggested framework has 173 

a classification accuracy of 98.8%, which is better than traditional CNN implementations in terms of speed and accuracy. 174 

Munguía-Siu et al., 2024 [35] Introduced hybrid “convolutional neural network-recurrent neural network” (CNN- 175 

RNN) models for identifying tumor anomalies in dynamic breast thermography images. Five advanced pre-trained 176 

CNN architectures were combined with three RNNs. The optimal hybrid architecture was VGG16-LSTM, exhibiting a 177 

specificity of 98.68%, an accuracy of 95.72%, and a sensitivity of 92.76%, with a CPU runtime of 3.9 seconds. AlexNet- 178 

RNN was the fastest model, with a CPU runtime of 0.61 s and performance of 92.76% specificity, 68.52% sensitivity, and 179 

80.59% accuracy, still outperforming stand-alone AlexNet. The findings show that “CNN-RNN” hybrid models perform 180 

better than standalone CNN models, which means that dynamic breast thermographs can have their temporal data 181 

recovered without a major impact on classifier runtime. 182 

Hanieh et al., 2024 [36] examines the process of extracting features from a dataset of thermographic photographs 183 

using a CNN technique. The initial stage was to use the CNN network to get a feature vector from the pictures. The 184 

following stage is to use machine learning to sort the pictures. The study utilized four distinct classification methods to 185 

identify breast cancer from thermographic images: KNN (94.1% accuracy), “fully connected neural network” (FCnet) 186 

(94.2% accuracy), “support vector machine” (SVM) (95% accuracy), and “classification linear model” (CLINEAR) (95% 187 

accuracy). Additionally, the sensitivity of these classifiers were determined to be 95.5% for FCnet , 94.1% for SVM , 188 

90.4% for CLINEAR , and 93.2% for KNN, while the reliability parameters were determined to be 92.1% for FCnet, 97.5% 189 

for SVM, 96.5% for CLINEAR, and 91.2% for KNN. These results can help experts create an expert approach for diag- 190 

nosing breast cancer. 191 

Shojaedini and Bahramzadeh, 2024[37] presents an innovative method that uses deep autoencoder ideas to remove 192 

unnecessary or damaging information from synthetic thermograms while maintaining important and independent 193 

properties. As a result, the suggested method improves the representation of artificial pictures for deep network train- 194 

ing, which improves thermogram diagnosis of breast cancer. When compared to benchmark approaches, the suggested 195 

method's performance on the DMR-IR dataset demonstrates a notable enhancement in thermogram detection of malig- 196 

nant breasts. The basic model of the innovative integration, the average accuracy, sensitivity, and specificity increased 197 

to 92.3%, 93%, and 91.4%, respectively, exceeding the basic model's 89.1%, 86%, and 92.5%. reduced difference between 198 

the training and validation curves showed that the suggested approach performed better at preventing over -fitting, 199 

leading to a 7% gain in accuracy and a 3.2% increase in sensitivity. Even though the specificity decreased by 1.1%, other 200 

parameter improvements exceeded. 201 

Ahmed et al., 2024 [38] uses a pre-trained VGG16 convolutional neural network and transfer learning to suggest 202 

deep learning (DL) model utilizing the most advanced technique. Thermal image from the (DMR-IR) Database for Re- 203 

search are used by authors to train and assess the model. To enhance model performance, they also employ normaliza- 204 
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tion and augmentation techniques. The DL-based model predicted BC lesions with a promising 99.4% (accuracy) detec- 205 

tion rate. In comparison to earlier models, it has AUC-ROC of 99.8%, specificity of 97.5%, precision of 98.9%, F1-Score 206 

of 99.8%, recall of 99%, and a sensitivity of 100%.  207 

Al Husaini et al., 2024 [39] developed a system that improves breast cancer classification accuracy by using in situ 208 

cooling support and preserving spatial features. The framework uses Deep Learning models and real-time thermogra- 209 

phy video streaming to find breast cancer early. Inception v3, Inception v4, and a changed version of Inception Mv4 210 

were all made with MATLAB 2019.  However, a mobile phone was connected to a thermal camera to take pictures of 211 

the breast area so that normal and diseased breast tissue could be told apart. The study's training dataset consisted of 212 

1000 thermal photos, of which 300 were suitable for the abnormal class and 700 were deemed appropriate for the normal 213 

breast thermography class. The Deep Convolutional Neural Network models that are tested include Inception version 214 

3 (v3), Inception version 4 (v4), and a modified version called modified Inception version 4 (Mv4). The results show that 215 

Inception Mv4 can accurately identify even the smallest temperature differences in breast tissue sequences in real time, 216 

with an accuracy of 99.748%. Inception version 3 and Inception version 4, on the other hand, had accuracies of 96.8% 217 

and 99.712%, respectively. The in situ cooling gel used for thermal imaging made breast imaging more effective. A 0.1% 218 

rise in tumor surface temperature led to a 7% rise in accuracy for detection and classification . 219 

Mohammed Jawad Khudhur, 2024[40] suggests employing an improved “Deep Convolutional Neural Network” 220 

(DCNN) to detect and diagnose breast cancer early and accurately. Researcher employs a DCNN with 12 stacked pro- 221 

cessing layers, enhancing diagnostic and detection accuracy compared to prior methodologies. The Mini Mammo- 222 

graphic Database (MIAS) serves as the dataset for assessing the efficacy of the proposed system. The findings indicate 223 

that the Deep CNN achieves an impressive accuracy of 99.1%.  The advantages of the proposed DCNN-based approach 224 

are demonstrated through a comparison with analogous studies. 225 

Dihmani et al., 2024 [41] proposed a “computer-aided diagnostic” (CAD) scheme utilizing thermal imaging for 226 

breast cancer diagnosis and Explainable Artificial Intelligence. To enhance classification accuracy and interpretability, 227 

the authors employed a distinctive approach utilizing metaheuristic algorithms, specifically the “Hybrid Particle Swarm 228 

Optimization” (HPSO) and “Hybrid Spider Monkey Optimization” (HSMO). These strategies improved both feature 229 

selection and hyperparameter tweaking in the CAD system. Techniques employed for feature extraction included Gabor 230 

filters, “Histogram of Oriented Gradients” (HOG), “Local Binary Patterns” (LBP), and Canny edge detection. To en- 231 

hance diagnostic accuracy, “dynamic infrared thermography” (DIT) images under controlled cooling conditions were 232 

incorporated into the “DMR-IR dataset”. The model achieved high performance metrics utilizing a 70-30 train-test split 233 

of patient images. Utilizing the HSMO, the system effectively identified cancerous tissues by thermographic analysis, 234 

attaining an F1-score of 98.15% and an accuracy of 98.27%, while selecting just 25.78% of HOG characteristics. 235 

Da Silva et al., 2024 [42] uses thermographic images and “convolutional neural networks” to tell the difference 236 

between breast cancer and other types of cancer. To do this, two methods are compared: one uses CNNs to get the 237 

original feature vectors, and the other uses Particle Swarm Optimization to make the vectors smaller for feature selec- 238 

tion. The results show that both strategies work very well. The highest accuracy of 79.92% was achieved using full 239 

feature vectors with the Inception V3 convolutional neural networks (CNN) and a support vector machine with a third- 240 

degree polynomial kernel. The Inception V3 CNN combined with a support vector machine using γ = 0.25 for the RBF 241 

kernel achieved the highest sensitivity and specificity scores, recording 100% sensitivity and 99.49% specificity. The 242 

same combination produced the highest AUC, which was 0.83. Using the Inception V3 CNN with a 4th-degree polyno- 243 

mial kernel and PSO-selected features, the highest accuracy was 78.55%. 244 

Nigam and Swarnkar, 2024 [43] suggested approach advocates for a deep learning methodology, specifically Con- 245 

volutional Neural Networks (CNNs), for the detection of breast cancer. The goal was to create a CNN-based model for 246 

diagnosing breast cancer that could tell the difference between benign (non-cancerous) and malignant (cancerous) tu- 247 

mors. The study aimed to enhance the accuracy of early diagnosis, which is essential for effective treatment. authors 248 

used the “Discrete Wavelet Transform” (DWT) to analyze the images, and we made the images clearer and less noisy 249 

to make feature extraction more accurate. The images were classified as either benign or malignant using a CNN model, 250 

and the effectiveness of different classifiers—Support Vector Machine, Logistic Regression, and Random Forest—was 251 

compared. The proposed model identified both benign and malignant cases with an accuracy of up to 85%. 252 

Ahmad et al., 2024 [44] suggested a “computer-aided diagnostic” (CAD) system based on deep learning that would 253 

make it easier to find breast cancer by finding and classifying tumors. authors used advanced technologies like Breast- 254 

Net-SVM for classification, Associat-ed-ResUNets for hashing, and YOLO networks for detection. Researchers showed 255 
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that the system could do better than other technologies by getting 98.5% of tumors detected correctly and 99.16% of 256 

tumors classified correctly. 257 

Wang et al., 2024 [45] proposed a novel model termed “DeepClinMed-PGM”, which stands for “Deep Learning 258 

Clinical Medicine Based Pathological Gene Multi-modal”, designed to predict DFS by integrating “clinicopathological 259 

data with molecular insights”.   The external testing group had 95 people, the internal validation group had 184 peo- 260 

ple, and the training group had 741 people.   The AUC values for 1-, 2-, and 3-year DFS predictions were 0.851, 0.878, 261 

and 0.938 in the external cohort and 0.979, 0.957, and 0.871 in the training cohort. Strong dis-criminative skills were 262 

shown by the external cohort (HR 0.061, 95% CI 0.017–0.218, P < 0.0001), internal validation cohort (HR 0.117, 95% CI 263 

0.041–0.334, P < 0.0001), and training cohort (HR 0.027, 95% CI 0.0016–0.046, P < 0.0001). The C-index scores were 0.864, 264 

0.823, and 0.925. 265 

Tsietso et al., 2023 [46] demonstrate a tool called thermal infrared-based “computer-aided diagnosis” (CADx) that 266 

is cheaper, safer, and better for kids. Most “CADx” systems use frontal breast thermograms, so they probably won't 267 

find lesions that grow on the sides. These systems also often miss important clinical data, like risk factors. The author 268 

introduces an innovative CADx system for breast cancer detection utilizing deep learning methodologies. The system 269 

has a lot of different views of the breast thermogram and the clinical information that goes with it to make the diagnosis 270 

more accurate. The author explains how the system works, such as how transfer learning is used to train three different 271 

models and how regions of interest are found in photos. The results show that multi-input models are better than single- 272 

input models. They have an AUROC curve of 0.94, a sensitivity of 93.33%, and an overall accuracy of 90.48%. 273 

Husaini et al., 2023 [47] suggests a method for the early diagnosis of breast cancer that makes use of “deep learning 274 

models and real-time thermography video streaming”. The framework uses “Inception v3”, “v4”, and a “modified In- 275 

ception Mv4” of deep convolutional neural network models to classify normal and abnormal breasts. It is implemented 276 

in MATLAB 2019 with infrared camera and records high-quality real-time video streams. The findings show that the 277 

Inception Mv4 model can efficiently identify even the smallest temperature differences in tissue of the breast by pro- 278 

ducing a series of infrared image taken from various perspectives when paired with real-time video streaming. Adding 279 

cooling gel to the breast area makes the contrast even better, which helps with accurate detection and an effective picture 280 

acquisition process. In addition, the study shows that a small rise in the temperature of the tumor surface area of 0.1% 281 

can lead to an average gain of 7% in detection and classification accuracy. 282 

Ali et al., 2023 [48] introduces the “Enhanced Channel-Wise Attention Mechanism” (ECAM), a deep learning ana- 283 

lysis tool for “breast invasive ductal carcinoma” (BIDC) histopathology images. The study's primary objectives are to 284 

augment computational efficiency by employing a separable Convolutional Neural Networks architecture, to improve 285 

data representation via hierarchical feature aggregation, and to enhance accuracy and interpretability through channel- 286 

wise attention mechanisms. The developed ECAM model was compared to DenseNet121, VGG16, and AlexNet using 287 

two publically available datasets, BreakHis and DataBioX IDC. On the IDC dataset, the proposed ECAM model obtained 288 

an F1-score of 96.65% and an exceptional accuracy rate of 96.70%. Once again, the proposed ECAM model performed 289 

exceptionally well on the BreakHis dataset, with an accuracy rate of 96.33% and an F1-score of 96.37%. 290 

Khan et al., 2023 [49] suggest a thermal imaging-based model to identify breast cancer. Create a personalized CNN- 291 

based machine learning model that has been trained on different thermal image datasets showing breast problems. Use 292 

thermal image processing algorithms to predict breast cancer based on outside signs. To find images that cause cancer, 293 

segmentation, texture-based feature extraction, and image classification are used. Use 2D CNNs and activation algo- 294 

rithms to mix ResNet with parts of GoogleNet to make a custom classifier. Add layers for maxpooling and batch nor- 295 

malization. Use DMR-IR images to teach the model.  The proposed 2D CNN classifiers surpassed CNN (71%) and SVM 296 

(91%), attaining a 95% classification rate. 297 

Alshehri and AlSaeed, 2023 [50] proposed a novel approach for breast cancer diagnosis that integrates deep atten- 298 

tion mechanisms (AMs) in thermal imaging with pre-trained VGG16 convolutional neural networks. Three different 299 

kinds of AMs were used to make the classification more accurate and the feature extraction process better: hard atten- 300 

tion, self-attention, and soft attention. The authors used the DMR-IR dataset, which had “1542 thermal images” of 56 301 

patients' breasts. Of these, 762 showed malignant cases and 780 showed healthy cases. To get around the limits of the 302 

dataset, data augmentation techniques were used to make a bigger dataset with 4146 photos. The VGG16 model with 303 

hard attention had the highest accuracy at 99.80%, followed by self-attention at 99.49% and soft attention at 99.32%. This 304 

method performed better than previous research, demonstrating how AMs can greatly improve thermal imaging for 305 

breast cancer diagnosis. 306 
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Torres-Galván et al., 2022 [51] proposed “automatically classify thermograms as normal and abnormal using a 307 

deep convolutional neural network with transfer learning” model . A sample of “311 females” subjects was used to test 308 

the CNN's performance in two ways: one in a typical screening co-hort with a low number of unusual thermograms, 309 

and the other with a balanced class distribution.  The transfer-learned ResNet-101 model exhibited a sensitivity of 310 

92.3% and a specificity of 53.8%. In contrast, the corresponding values were a sensitivity of 84.6% and a specificity of 311 

65.3%, characterized by an imbalanced distribution. archived accuracy of balanced class is 73.1% and unbalanced class 312 

is 74.9%. 313 

Mammoottil et al., 2022  [52] demonstrates a “convolutional neural network”-based model that uses the Visual 314 

DMR dataset to identify breast cancer by utilising several thermal images of the breast. The clinical data is then used to 315 

confirm these models' performances. Results show that the model's performance improved when clinical data judge- 316 

ments were added. The model that had the same architecture for all three views fared the best after two models with 317 

different architectures were constructed and tested. With the addition of the clinical data decision, its accuracy rose 318 

from 85.4% to 93.8%. When selecting sick patients as the positive class, the model was able to classify more patients 319 

properly with a sensitivity of 88.9 % and specificity of 96.7% after adding clinical data decisions. 320 

Mohamed et al., 2022 [53] suggest a method that detects breast cancer entirely automatically. Initially, the breast 321 

region is automatically separated and isolated from the rest of the body that acts as noise in the detection model of 322 

breast cancer, using the U-Net network. Second, author provides a two-class deep learning model for the categorisation 323 

of normal and pathological breast tissues using thermal pictures. This model is trained from scratch. Additionally, it is 324 

employed to extract additional features from the dataset that aid in network training and enhance classification process 325 

efficiency. When tested on database (DMR-IR), the suggested system obtained 99.33% accuracy, 100% sensitivity, and 326 

98.67% specificity. 327 

Ensafi et al., 2022 [54] propose a novel method for combining many thermography imaging views to enhance the 328 

diagnosis of breast cancer. The technique uses pre-trained deep learning architectures with transfer learning to merge 329 

frontal-45, lateral-45, and lateral views of thermal images. Improving these algorithms' ability to identify breast cancer 330 

was the aim. In comparison to existing deep learning or handcrafted methods, the suggested method produced a spec- 331 

ificity increase of 2-30%and a sensitivity increase of 2-15%. In particular, compared to using only the frontal view, the 332 

sensitivity increased to 2 and the specificity reached 1 when lateral views were included. The suggested approach per- 333 

formed at least 2% better in terms of sensitivity and specificity than alternatives when it came to differentiating between 334 

healthy and malignant tissues. 335 

Dey et al., 2022 [55] suggest system to detect breast cancer that can identify the disease by using thermal breast 336 

imaging. Here, the author builds a classifier for the stated objective by using the DenseNet121 pre-trained model to 337 

extract the feature. The author work with the original thermal image of breast to obtain outputs utilising two edge 338 

detectors, Prewitt and Roberts, prior to feature extraction. The original image and these two edge-maps combine to 339 

form the DenseNet121 model's 3-channel input. the model's performance is assessed using the “Database for Mastology 340 

Research (DMR-IR)”, a collection of thermal breast images. On the aforementioned database, the author achieved 341 

98.80% as highest classification accuracy. 342 

Aidossov et al., 2022 [56] Develop CNN methods to diagnose breast tumours with intelligence and precision. Breast 343 

thermograms obtained from a multicenter database were used for binary classification without any preprocessing is the 344 

work's primary innovation. The findings in this research demonstrate the effectiveness and use of deep learning for 345 

thermogram standardisation. It is discovered that the constructed model can achieve 80.77% accuracy, 44.44% sensitiv- 346 

ity, and 100% specificity. 347 

Alshehri and AlSaeed, 2022  [57] Assess the degree to which attention mechanisms (AMs) combined with convo- 348 

lutional neural networks (CNNs) can produce adequate detection outcomes for thermal breast cancer photos. The au- 349 

thors use thermal pictures from the Database (DMR-IR) to demonstrate a deep neural network-based breast cancer 350 

detection model with AMs. The model's accuracy, sensitivity, and specificity will be assessed, and it will be contrasted 351 

with the most advanced techniques for detecting breast cancer. On the breast thermal dataset, the AMs using the CNN 352 

model had positive test accuracy rates of 99.46%, 99.37%, and 99.30%. CNNs without AMs had a test accuracy of 92.32%, 353 

but CNNs with AMs improved their accuracy by 7%.  354 

Houssein et al., 2021 [58] suggested a novel and effective version of the well-known chimp optimization technique 355 

(ChOA): the opposition-based Lévy Flight chimp optimizer (IChOA).  Opposition-based learning (OBL) is used to ex- 356 

pand the population variety of ChOA, while the Lévy Flight is used to improve its exploitation.  The IChOA is used to 357 
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solve the picture segmentation problem using multilevel thresholding. The Otsu and Kapur techniques were used to 358 

test the method on the DMR-IR database. It was then compared to seven other meta-heuristic algorithms: ChOA, SSA, 359 

SCA, WOA, MFO, GWO, and EO.   When it came to separating different positive and negative examples, IChOA did 360 

better than its competitors in terms of accuracy, consistency, quality, and evaluation matrices like FSIM, SSIM, and 361 

PSNR. 362 

Zadeh et al., 2021[59] proposed a novel approach to breast cancer diagnosis that extracts features from thermal 363 

imaging using a dynamic segmentation model and classifies data using a deep autoencoder neural network. The 364 

method employs a semi-automated procedure to identify breast areas according to their morphological characteristics 365 

by extracting eight statistical factors from thermography images. An unsupervised deep-learning autoencoder pro- 366 

cesses these traits to tell the difference between cancerous and healthy tissues. The authors achieved an impressive 367 

accuracy rate of 94.87% and a specificity of 96.77% by validating their method on a dataset of 196 individuals. This 368 

demonstrated the model's capability to accommodate various breast morphologies and accurately identify anomalies. 369 

Ucuzal et al., 2021 [60] designed a system using pre-trained networks to classify breast cancer from thermographic 370 

images. The dataset, which was converted from.txt to.jpeg format, contained 179 healthy images and 101 patients 371 

(source: http://visual.ic.uff.br/dmi/). After testing a number of pre-trained models, ResNet50V2 produced the best ac- 372 

curacy, 99.6%. Medical professionals can now more effectively detect breast cancer thanks to an interface designed as a 373 

computer-aided diagnosis tool. 374 

Sánchez-Ruiz et al., 2020 [61] suggested approach divides the area of interest using statistical operators, local op- 375 

erations, and overlap. First- and second-order statistics are then used to extract features. These characteristics are then 376 

used to train an artificial neural network (ANN). The approach produced competitive accuracy values ranging from 377 

90.17% to 98.33% when tested on a popular image database. The study addresses the drawbacks of conventional mam- 378 

mography and emphasizes the benefits of breast thermography as a low-cost, non-invasive screening method. The out- 379 

comes demonstrate how well the suggested approach works to increase the precision of thermograph-based breast 380 

cancer detection. 381 

Silva et al., 2020 [62] suggest a computational approach that uses supervised and unsupervised machine learning 382 

approaches to analyses breast dynamic image of thermography infrared in order to identify patients for breast abnor- 383 

malities. A benign tumor or a malignant tumor (cancer) might be an anomaly. The author uses accuracy, sensitivity, 384 

specificity, and the area under the ROC curve as performance metrics. With an accuracy of 98.57%, the K-Star classifier 385 

produces the best results. The findings support the suggested method's potential for screening patients for breast ab- 386 

normalities. 387 

Ekici and Jawzal, 2020  [63] Develop system for automatic breast cancer detection that analyses thermal breast 388 

photos using image processing methods and algorithms to find illness indicators, enabling early breast cancer identifi- 389 

cation. A novel approach based on bio-data, image statistics, and image analysis is put forth for the extraction of breast 390 

distinctive features. CNNs optimised by the Bayes algorithm will be used for breast image classify as suspicious or 391 

normal based on these attributes that were retrieved from the thermal images. The accuracy rate of the suggested ap- 392 

proach was 98.95% for the thermal pictures in the dataset that included 140 people. 393 

Khomsi et al., 2020 [64] presents a new way to use superficial thermography to find breast cancer early.  The 394 

authors conceptualized the breast as a multi-layered structure exhibiting varying thermal properties and utilized COM- 395 

SOL Multiphysics software to simulate temperature gradients induced by tumors within breast tissue. To test these 396 

models in a lab, they made a breast imaging phantom out of organic materials that simulate the thermal and physical 397 

properties of real tissue. They put heat sources in different places and depths to make tumors. A heating control system 398 

kept the temperature of these model tumors at a certain level. Thermography is a potential non-invasive and affordable 399 

method for early breast cancer detection, as evidenced by the results showing that thermographic devices could accu- 400 

rately detect minute temperature changes on the surface. 401 

Comparative Summary of Reviewed Studies  402 

This section gathers all of the studied studies into a structured comparison to provide a better understanding of 403 

the various studies. Table 2 compiles datasets, methods, advantages, disadvantages, and evaluated performance. 404 

Note: The "Results" column shows a summary of other performance measures like sensitivity, specificity, precision, 405 

and F1-scores. Accuracy values are shown in a separate column. 406 

 407 
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Table 2: Comparative Summary 408 

Cite Dataset 
Algorithm / 

Technique 
Advantage Disadvantage Results Accuracy 

Tang et 

al., 2025 

[30] 

Thermogra-

phy dataset 

Multi-light 

Net (multi-in-

put light-

weight CNN) 

Lightweight, ef-

ficient, suitable 

for limited re-

sources 

Slightly lower 

than heavier 

models; re-

quires careful 

tuning 

Balanced sensitiv-

ity and specificity 

with strong over-

all performance 

~96% 

Attallah, 

2025 [31] 

DMR-IR 

and novel 

dataset 

Multi-CNN 

CAD + feature 

transfor-

mation (NMF 

+ Relief-F) 

Multi-dataset 

testing; inter-

pretable CAD 

system 

Lower perfor-

mance on be-

nign vs malig-

nant cases 

100% accuracy 

(normal vs abnor-

mal, DMR-IR); 

79.3% (benign vs 

malignant, new 

dataset) 

100% / 

79.3% 

Bani Ah-

mad et al., 

2025 [32] 

Thermogra-

phy dataset 

StackVRDNet 

(VGG16 + 

ResNet + 

DenseNet + 

RHDAO heu-

ristic opti-

mizer) 

High accuracy, 

hybrid ensem-

ble improves 

robustness 

Complex archi-

tecture; higher 

training time 

Precision 86.86%, 

strong feature 

weighting 

97.05% 

Veer-

lapalli 

and Dutta 

, 2025 [33] 

Breast ther-

mography 

dataset 

Hybrid GAN 

+ DL classifier 

Tackles dataset 

scarcity with 

synthetic data; 

boosts classifi-

cation 

GAN training 

instability; re-

quires more 

computation 

Enhanced classifi-

cation perfor-

mance; improved 

sensitivity and 

specificity 

~96–98% 

Alzahrani 

et al., 2025 

[34] 

Thermo-

graphic im-

ages (pub-

lic) 

CNN + En-

hanced Parti-

cle Swarm 

Optimization 

(EPSO) + pre-

processing 

(CLAHE, 

fuzzy edge 

detection, me-

dian filter) 

Automated 

CAD, improved 

hyperparameter 

tuning, better 

preprocessing 

Requires high 

computational 

resources, com-

plex pipeline 

Improved CNN 

performance com-

pared to baseline; 

strong sensitivity 

& specificity 

~97–99% 

Munguía-

Siu et al., 

2024 [35] 

Dynamic 

thermogra-

phy se-

quences 

(DMR-IR 

DIT proto-

col) 

VGG16 + 

LSTM (Hy-

brid CNN–

RNN) 

Captures both 

spatial and tem-

poral features 

from dynamic 

sequences 

Requires se-

quential inputs 

and more com-

plex modeling 

Outperformed 

single CNNs; hy-

brid models im-

proved classifica-

tion performance 

95.72% 

Hanieh et 

al., 2024 

[36] 

Thermo-

grams 

CNN + Ma-

chine learn-

ing (FCnet, 

SVM, CLIN-

EAR, KNN) 

High accuracy 

and reliability 

Requires large 

datasets for 

training 

Reliability: 

91.2%–97.5%; Sen-

sitivity: 90.4%–

95.5% 

 

94.1-95.0% 
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Shojae-

dini and 

Bahram-

zadeh, 

2024[37] 

Synthetic 

thermo-

grams 

Deep autoen-

coders 

Improved fea-

ture representa-

tion and detec-

tion accuracy 

Requires syn-

thetic data gen-

eration 

Significant im-

provement in de-

tection accuracy 

92.3% 

Ahmed et 

al., 2024 

[38] 

DMR-IR 

VGG16 with 

transfer learn-

ing 

High accuracy, 

sensitivity, 

specificity, and 

other metrics 

Requires large 

datasets and 

computational 

resources 

F1: 99.8%; Preci-

sion: 98.9%; Re-

call: 99%; Speci-

ficity: 97.5%; Sen-

sitivity: 100%;  

99.4% 

Al Hu-

saini et 

al., 2024 

[39] 

Real-time 

thermogra-

phy videos 

Inception v3, 

v4, modified 

Inception 

Mv4 

Real-time detec-

tion, high accu-

racy, enhanced 

with in-situ 

cooling 

Requires spe-

cialized hard-

ware and soft-

ware 

High accuracy 

(96.8-99.748%) 
99.7% 

Moham-

med Ja-

wad 

Khudhur, 

2024  [40] 

MIAS DCNN 
High accuracy, 

early detection 

Requires large 

datasets and 

computational 

resources 

High accuracy 

(99.1%) 
99.1% 

Dihmani 

et al., 2024 

[41] 

DMR-IR 

Hybrid PSO 

and SMO, 

XAI 

Interpretable, 

high accuracy, 

feature selec-

tion 

Complex opti-

mization pro-

cess 

High accuracy 

(98.27%), high F1-

score (98.15%) 

98.27% 

da Silva et 

al., 

2024[42] 

Thermo-

grams 

CNNs with 

PSO for fea-

ture selection 

High accuracy, 

sensitivity, and 

specificity 

Requires care-

ful feature se-

lection 

High accuracy 

(78.55-79.92%), 

high sensitivity 

and specificity 

78.55-

79.92% 

Nigam 

and 

Swarnkar, 

2024 [43] 

Thermo-

grams 

CNNs with 

DWT 

Improved im-

age quality and 

feature extrac-

tion, high accu-

racy 

Requires care-

ful data prepro-

cessing and 

model training 

High accuracy (up 

to 85%) 
Up to 85% 

Ahmad et 

al., 2024 

[44] 

Medical im-

ages 

YOLO, 

ResUNet, 

BreastNet-

SVM 

High accuracy 

in detection and 

classification 

Requires large 

datasets and 

computational 

resources 

98.5% detection 

accuracy, 99.16% 

classification ac-

curacy 

98.5%, 

99.16% 

Wang et 

al., 2024 

[45] 

Multi-

modal data 

(pathology 

imaging, 

molecular, 

clinical) 

DeepClinMed

-PGM 

Improved DFS 

prediction, ro-

bust perfor-

mance across 

cohorts 

Requires large 

and diverse da-

tasets 

High AUC values, 

low hazard ratios 

Not ex-

plicitly 

stated 

Tsietso et 

al., 2023 

[46] 

clinical data  

, 

Thermal in-

frared im-

ages 

Deep learning 

Incorporates 

multiple views 

and clinical 

data 

May miss le-

sions on the 

sides, disre-

gards some clin-

ical data 

accuracy 

90.48%AUROC 

0.94, sensitivity 

93.33%, 

90.48% 
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Husaini et 

al., 2023 

[47] 

Real-time 

thermogra-

phy videos 

Inception v3, 

v4, modified 

Mv4 

Real-time detec-

tion, high accu-

racy, enhanced 

with in-situ 

cooling 

Requires spe-

cialized hard-

ware and soft-

ware 

High accuracy 

(96.8-99.748%) 
99.748% 

Ali et al., 

2023 [48] 

Histopatho-

logical im-

ages (IDC 

and 

BreakHis) 

ECAM (En-

hanced Chan-

nel-Wise At-

tention Mech-

anism) 

High accuracy, 

improved fea-

ture representa-

tion, computa-

tional efficiency 

Requires large 

and diverse da-

tasets 

High accuracy 

and F1-scores on 

both datasets 

96.65% 

(IDC), 

96.33% 

(BreakHis) 

Khan et 

al., 2023 

[49] 

Thermal 

images 

Customized 

2D CNN 

High accuracy, 

improved clas-

sification 

Requires care-

ful data prepro-

cessing and 

model training 

High accuracy 

(95%) 
95% 

Alshehri 

and Al-

Saeed, 

2023 [50] 

Thermal 

images 

VGG16 with 

AMs 

High accuracy, 

improved per-

formance over 

baseline 

VGG16 

Requires care-

ful tuning of 

AMs 

High accuracy 

(99.32-99.80%) 
99.80% 

Torres-

Galván et 

al., 2022  

[51] 

Thermo-

grams 

Deep convo-

lutional neu-

ral network , 

transfer learn-

ing 

High sensitivity 

for abnormal 

thermograms 

Lower specific-

ity, especially 

with unbal-

anced distribu-

tion 

Sensitivity of 

92.3%, specificity 

of 53.8% (bal-

anced), sensitivity 

of 84.6%, specific-

ity of 65.3% (un-

balanced) 

balanced 

class: 

73.1% 

unbal-

anced: 

74.9% 

Mam-

moottil et 

al., 2022 

[52] 

Visual 

DMR da-

taset 

Convolu-

tional neural 

networks 

Improved per-

formance with 

clinical data 

Limited public 

datasets for 

thermography 

Accuracy  85.4% 

before clinical 

data, 93.8% after 

clinical data 

93.8% 

Mohamed 

et al., 2022 

[53] 

Real data 

(DMR-IR) 

U-Net for 

breast area ex-

traction, two-

class deep 

learning 

model 

Fully automatic, 

high accuracy 

Not explicitly 

stated 

Accuracy of 

99.33%, sensitiv-

ity of 100%, speci-

ficity of 98.67% 

99.33% 

Ensafi et 

al., 2022 

[54] 

DMR-IR 

(Database 

for Mastol-

ogy Re-

search) 

Multiple 

views of ther-

mograms 

with transfer 

learning 

Improved sensi-

tivity and speci-

ficity through 

multi-view fu-

sion 

Requires com-

bining different 

thermogram 

views 

increase Sensitiv-

ity 2-15% , in-

crease specificity 

2-30% over single-

view models 

up to 93% 

Dey et al., 

2022 [55] 
DMR-IR 

DenseNet121 

with edge de-

tection 

High accuracy; 

edge detection 

enhances fea-

ture extraction 

Preprocessing 

adds complex-

ity 

Highest 98.80% 

classification ac-

curacy on dataset 

DMR-IR 

98.80% 

Aidossov 

et al., 2022 

[56] 

Multicenter 

database 

(unnamed) 

CNNs with-

out prepro-

cessing 

Simple imple-

mentation; non-
Low sensitivity 

Useful for stand-

ardized analysis; 
80.77% 
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invasive 

method 

accuracy of 

80.77% 

Alshehri 

and Al-

Saeed, 

2022 [57] 

DMR-IR 

CNNs with 

Attention 

Mechanisms 

(AMs) 

Improved accu-

racy with atten-

tion mecha-

nisms 

Requires high 

computational 

resources 

test Achieved ac-

curacy 99.46%, 

99.37%, and 

99.30% 

99.46% 

Houssein 

et al., 2021 

[58] 

DMR-IR 

Opposition-

based Lévy 

Flight Chimp 

Optimization  

Efficient seg-

mentation; im-

proved conver-

gence 

Algorithm com-

plexity and po-

tential stagna-

tion 

Outperformed 

seven meta-heu-

ristic algorithms 

in segmentation 

quality 

Not di-

rectly ap-

plicable 

Zadeh et 

al., 

2021[59] 

Database 

for Mastol-

ogy Re-

search (Bra-

zil): 196 

subjects, 41 

with cancer 

and 155 

healthy, 

1,960 ther-

mography 

images total 

Deep autoen-

coder neural 

network 

High specificity 

(96.77%) and ro-

bustness across 

various breast 

morphologies; 

non-invasive 

Imaging se-

quence sensi-

tive to posi-

tional changes, 

requires a sta-

ble patient posi-

tion 

Successfully clas-

sified abnormal 

vs. normal ther-

mograms 

94% 

Ucuzal et 

al., 2021 

[60] 

Public da-

taset 

Pre-trained 

networks 

(ResNet50V2) 

High accuracy; 

pre-trained net-

works reduce 

training time 

Dataset limita-

tions 

Best classification 

performance with 

ResNet50V2 

99.6% 

Sánchez-

Ruiz et 

al., 2020 

[61] 

Widely 

used image 

database 

ANN with lo-

cal and statis-

tical opera-

tions for ROI 

segmentation 

Non-invasive, 

low-cost screen-

ing; high accu-

racy with ANN 

Limited gener-

alization for 

new datasets 

Achieved compet-

itive accuracy re-

sults ranging 

from 90.17% to 

98.33% 

90.17%-

98.33% 

Silva et 

al., 

2020[62] 

Dynamic 

Infrared 

Thermogra-

phy images 

K-Star classi-

fier 

Effective 

screening tool; 

high specificity 

Limited sensi-

tivity for certain 

cases 

Best results with 

an accuracy of 

98.57% 

98.57% 

Ekici and 

Jawzal, 

2020 [63] 

Thermal 

images da-

taset (140 

individuals) 

CNNs opti-

mized by 

Bayes algo-

rithm 

High accuracy 

in classification; 

early detection 

capabilities 

Bio-data re-

quirements for 

feature extrac-

tion 

High classifica-

tion accuracy 

achieved at 

98.95% 

98.95% 

Khomsi et 

al., 2020 

[64] 

Simulated 

breast im-

aging phan-

tom 

Surface ther-

mography 

simulation 

using COM-

SOL 

Physical mim-

icry of breast 

tissue; early de-

tection potential 

Limited to sim-

ulated environ-

ment 

Demonstrated po-

tential for early 

detection using 

surface thermog-

raphy 

N 

6. Discussion  409 

The reviewed research demonstrate that deep learning has considerably improved the use of “thermal imaging” 410 

for breast cancer detection. The reported findings are consistently high, with most investigations obtaining accuracy 411 

above 90% and some nearing 100%. Transfer learning architectures, such as “VGG”, “ResNet”, and “Inception”, are still 412 

the most popular methods, but more recent advancements involve attention mechanisms, hybrid CNN-RNN models, 413 



Dasinya Journal for Engineering and Informatics. 2025, 1, 5. 14 of 19 
 

 

and optimization-assisted frameworks. These approaches often outperform classic CNNs, highlighting the significance 414 

of model architectures and preprocessing methodologies in enhancing diagnostic outcomes. 415 

    Figure 2 shows the reported accuracies for each reviewed study from 2020 to 2025, ranked from highest to lowest. 416 

Almost all of trials obtained performance levels above 90%, with a few exceeding 99%. However, some research that 417 

used simpler CNNs or smaller datasets found more modest results, ranging from 75 to 85%. This distribution demon- 418 

strates the significant impact of dataset quality, class balance, and methodology design on reported findings.  419 

 420 

 421 

Figure 2: Accuracy reported by each reviewed study (2020–2025), sorted from highest to lowest 422 

Figure 3 categories results by technique and displays the average accuracy achieved across categories. Transfer 423 

learning techniques, attention-based CNNs, and hybrid models clearly outperform traditional CNNs and handmade 424 

approaches, with mean accuracies that are consistently higher. This illustrates how innovation in architecture design, 425 

particularly by the use of pre-trained models, the addition of attention mechanisms, or the combination of spatial and 426 

temporal modelling, immediately translates into improved classification reliability. 427 
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 428 

Figure 3: Average accuracy categories by deep learning technique across reviewed studies.  429 

Even though these results are very good, there are some limits that need to be acknowledged. First, the heavy 430 

reliance on the DMR-IR dataset in many studies makes it hard to apply the results to other situations. When models are 431 

tested on photos from other schools or devices, high claimed accuracies may not be a good indicator of how well they 432 

work in the real world. Several studies have shown high accuracies (≥99%), which should be viewed with caution. These 433 

kinds of results are often made with small or unbalanced datasets and without outside validation. These factors can 434 

artificially enhance performance while constraining clinical utility. Third, while generative models like GANs can solve 435 

data scarcity by creating synthetic thermograms, their use is limited due to training instability and computational cost. 436 

Similarly, real-time or multi-view thermography systems show promise, but they require larger and more diversified 437 

datasets for reliable validation. 438 

Overall, the literature shows that AI-driven thermography has a lot of potential as a non-invasive and cheap way 439 

to find breast cancer early, but more research is needed before it can be used in real life. Future endeavors must prioritize 440 

the development of larger, standardized, and multi-institutional datasets, the implementation of external validation 441 

processes, and the publication of clinically relevant metrics such as sensitivity, specificity, and AUC, alongside accuracy. 442 

Also, looking into underused methods like GANs for data augmentation, hybrid “CNN-RNNs” for dynamic thermog- 443 

raphy, and attention mechanisms that make it easier to extract features could be helpful. Addressing these limitations 444 

will bring the field closer to developing a reliable, explainable, and clinically trusted framework for breast cancer screen- 445 

ing. 446 

7. Conclusion  447 

The study emphasizes the growing potential for enhancing early breast cancer detection by fusing deep learning 448 

methods with breast thermography. Models which include CNNs, GANs, U-Net, and transfer learning continuously 449 

demonstrated high accuracy, sensitivity, and specificity in interpreting thermal images in the research that was exam- 450 

ined. These technologies offer a strong substitute for traditional imaging techniques, especially when non-invasiveness, 451 

affordability, and accessibility are crucial considerations. The path to clinical adoption presents several challenges. Nu- 452 

merous studies utilize small or imbalanced datasets, and variations in imaging techniques may hinder model generali- 453 

zability. Furthermore, while AI models demonstrate promise, their interpretability and incorporation into real-world 454 

diagnostic procedures require additional refinement.  455 

Future research should emphasize the creation of standardized, diverse thermographic datasets, explore multi- 456 

modal imaging methodologies, and enhance AI models for transparency and clinical reliability.  Ongoing research and 457 

collaboration between the medical and technical sectors may render AI-enhanced thermography a feasible and scalable 458 

instrument for global breast cancer screening. 459 
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