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Abstract  

Breast cancer is an alarming worldwide health concern, and early detection is crucial for 

improving patient outcomes. This study explores the application of deep learning 

algorithms in breast thermography, a non-invasive and radiation-free imaging technique, 

to enhance diagnostic accuracy.  This research synthesizes peer-reviewed literature from 

2020 to 2025, focusing on various deep learning architectures, including CNNs, GANs, 

RNNs, U-Net, and transfer learning, in relation to thermographic datasets like DMR-IR 

and Visual DMR. The methodology employs a structured approach encompassing 

literature searches, criteria for inclusion and exclusion, data extraction, and synthesis. The 

findings indicate that deep learning significantly enhances segmentation, classification, 

and anomaly detection in thermal breast images, frequently surpassing traditional 

diagnostic techniques. While accuracy rates are promising, challenges persist, such as 

limitations in datasets, variability in images, and a lack of standardization. This study 

highlights the potential of AI-enhanced thermography as a cost-effective and scalable 

method for breast cancer screening, while also identifying key areas for further research 

to enhance generalizability and clinical application. 

Keywords: Deep Learning, Breast Thermography, Thermal Imaging, Breast Cancer 

Detection, Medical Imaging. 

1. Introduction  

The global rate of cancer continues to be high worldwide in recent years. Tens of millions of individuals receive a 

new cancer diagnosis every year. Suffering from cancer also claims the lives of millions, if not tens of millions, of 

individuals every year across the entire world. [1]. “According to the WHO, female breast cancer accounts for 11.6% of 

all new cases, with 2.3 million instances, placing it as the world's second most prevalent cancer after lung cancer” [2]. 

Most patients with breast cancer are already at an advanced stage, which contributes to the high death rate from the 

disease. If breast cancer is detected at stage I without the cancer cells invading the lymph nodes, the cure rate is 80–

90%[3]. 

Overall, tumors larger than 30 mm are seen in 70% of instances of breast cancer. Because breast cancer can manifest 

in a variety of ways, a comprehensive medical checkup is necessary. Consequently, reducing disease-related mortality 

relies on early detection and periodic exams [4]. Standard testing should be conducted on women who demonstrate 

persistent anomalies lasting one month or longer. The two most popular techniques for breast screening are 

mammography and clinical breast examination [5]. However, thermography is currently another screening method that 

can be employed. Thermal imaging assists in recognizing cancer by using an infrared camera to capture heat map 
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images of the target surface of breast. Recent developments in technology have made it possible to use thermography 

for screening processes with the aid of machine learning[6] [7].  

The focus of intense research in computer vision and artificial intelligence is the employ of deep learning 

technology to diagnose cancer from medical image. In addition to the intrinsic particularity and complexity of medical 

imaging, cancer detection demands extremely high accuracy and timeliness due to the rapid development of deep 

learning techniques [8]. A comprehensive review of relevant works is essential to assist readers in understanding the 

current status of research and ideas more clearly. This review aims to study the techniques of deep learning to detect 

breast cancer through breast thermography. Compared with other methods such as radiography and ultrasound, breast 

thermography is low-cost, less harmful, and shows high accuracy compared to previously existing methods. Through 

the review conducted, breast cancer detection methods show high accuracy by applying deep learning techniques to 

breast thermography. The organized rest of this review paper is presented as follows: The methodology is outlined in 

Section 2. Section 3 is basic information about breast cancer detection. While, Section 4 discusses breast thermography 

in cancer detection. Section 5 reviews the most important literature reviews and comparative summary of the reviewed 

literature during the five years related to the topic of this research paper. Sections 6 discussion of what was summarized. 

Finally, there is a conclusion in Section 7. 

2. Methodology 

This review followed a structured and transparent methodology to identify, screen, and synthesize recent works 

on the use of thermography and deep learning techniques for breast cancer detection between 2020 and 2025. Several 

academic databases, including Scopus, Google Scholar, IEEE Xplore, PubMed, and ScienceDirect, were extensively 

searched using keywords and Boolean combinations such as “breast thermography,” “deep learning,” “thermal 

imaging,” “convolutional neural network,” “DMR-IR dataset,” and “breast cancer detection,” while references from 

major papers were also reviewed to locate additional sources.  

Studies were included if they employed breast thermography as the imaging modality, utilized state-of-the-art 

machine learning and deep learning methods such as autoencoders, CNNs, or transfer learning, and reported 

quantitative performance metrics such as accuracy, precision, specificity, sensitivity, or balanced accuracy. Only peer-

reviewed journal and conference papers published between 2020 and 2025 were considered, while studies based on 

other imaging modalities (e.g., mammography, ultrasonography), works focusing purely on hardware development 

without algorithmic evaluation, and grey literature such as theses or preprints were excluded.  

From each eligible study, the year of publication, dataset used (e.g., DMR-IR, Visual DMR, multicenter 

thermograms), deep learning technique (e.g., CNN, U-Net, ResNet, VGG, DenseNet, autoencoder, attention 

mechanism), evaluation metrics, and key findings and limitations were extracted. The synthesis of findings indicated 

that deep learning considerably enhances the performance of breast thermography for cancer diagnosis, with CNNs, 

GANs, U-Nets, and transfer learning models applied to DMR-IR and Visual DMR datasets consistently achieving strong 

results in classification and segmentation tasks. Hybrid models and data augmentation strategies further improved 

robustness, while transfer learning proved especially effective with limited datasets. Despite these promising outcomes, 

challenges such as small dataset sizes, inconsistent imaging methodologies, and low generalizability remain, 

highlighting the need for standardized datasets, transparent models, and stronger validation protocols to advance AI-

enhanced thermography toward clinical adoption. 

According to the reviewed studies, deep learning considerably improves breast thermography for cancer 

diagnosis. Using the DMR-IR and Visual DMR datasets, CNNs, GANs, U-Nets, and transfer learning models 

consistently achieved good results in classification and segmentation tasks. While hybrid models and augmentation 

strategies enhanced robustness, transfer learning was especially effective with less data. 

Challenges continue even though there were positive results. Clinical adoption is hindered by small datasets, 

inconsistent imaging methodologies, and low generalizability.  Results highlight the need for more consistent datasets, 

more transparent models, and stronger validation to pave the way for AI-enhanced thermography to be used in the real 

world.  
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3. Breast Cancer Detection Background 

    Among women worldwide, breast cancer continues to be the most prevalent cancer. and it poses a serious 

threat to modern society. Timely identification of breast cancer has the ability to significantly improve the lives of 

innumerable people who are at risk globally. Age, history of family, and reproductive variables are the most significant 

risk factors for breast cancer. Furthermore, although there is currently little evidence to draw firm conclusions, 

hormonal factors and contemporary lifestyle choices are related to a higher risk of breast cancer in women. The variables 

that affect the risk of breast cancer are listed in Table 1 by [9] P. Wang, J. Chen, and W. Zhao. The possibility of a 

successful course of therapy and survival is significantly increased when breast cancer is detected early. Here are a few 

methods for identifying breast cancer. 

Table 1: Categories of breast cancer risk factors and their roles 

Category Protective Role Risk-Increasing Role Uncertain / Debated 

Demographic – Female gender, Advanced age – 

Reproductive 
Full-term pregnancy, Early 

first childbirth 

Late menopause, Nulliparity, 

Abortion 

Age at menarche, 

Menstrual cycle regularity 

Hormonal – 

Postmenopausal hormone 

therapy, Ovulation-inducing 

drugs 

Contraceptive methods, 

Pregnancy-related 

hormones 

Hereditary – 
Family history of breast cancer, 

Inherited genetic mutations 
– 

Breast-related – 
High breast density, Benign 

breast disorders 
Shorter lactation duration 

Lifestyle 

Regular physical activity, 

Healthy diet, Adequate 

vitamin D 

Alcohol intake, Smoking, 

Obesity/overweight 

Coffee consumption, Sleep 

duration 

Environmental / 

Other 
– 

Radiation exposure, Diabetes, 

Air pollution 

Night-shift work, Low 

socioeconomic status 

4. Breast Thermography in Cancer Detection 

As a complement for the early detection of abnormalities in the female breast, thermography measures the 

temperature of the breast area as the heat radiated to the environment by the skin surface. [9]. Through the 

transformation of radiation intensity, ”a thermographic camera generates a thermogram, which is shaped by the 

temperatures arranged in a two-dimensional array” [10]. Figure 1 shows the entire workflow of the above method. 

 

Figure 1 : process of breast thermography for the screening of malignancy cancer 

Because each area is influenced by both endogenous and exogenous factors, the temperatures that each breast 

projects are not consistent. Tumors distort vascularization, which causes localized temperature changes that are 
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transferred to the skin's surface.  Breast thermography depends on evaluating these thermographic images to detect 

tissue abnormalities early in order to lessen the suffering and death rate from breast cancer [11]. Additionally, 

thermograms have been used as datasets to perform image processing tasks, such as segmentation, feature extraction, 

and classification [12]. In 2014, Da Silva et al. “published accessible via Federal Fluminense University the first public 

database of breast thermography images, marking a significant milestone” [13].  

5. Literature Review 

Deep learning has revolutionized medical image analysis by providing highly accurate, flexible, and generalizable 

models compared to traditional mathematical and signal-processing approaches[14] [15] . Convolutional Neural 

Networks (CNNs) are the most widely applied, as they can automatically extract hierarchical features from input data 

and have proven effective in classification, segmentation, and anomaly detection, particularly in breast cancer detection 

where they often outperform conventional methods [16]. Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks extend this capability to sequential and temporal data, making them useful for dynamic 

imaging tasks and image denoising, where they help suppress artifacts such as white noise and salt-and-pepper 

noise[17] [18]. Autoencoders contribute by compressing and reconstructing data, enabling anomaly detection, noise 

reduction, and synthetic data generation, which is especially valuable when labeled datasets are limited [19]. Generative 

Adversarial Networks (GANs) further enhance data augmentation and segmentation by generating realistic synthetic 

images, although challenges such as instability and mode collapse persist; refined designs, including U-Net–based 

generators with adversarial and reconstruction loss, have achieved remarkable accuracy in breast thermography 

segmentation [20] [21].  

U-Net and Fully Convolutional Networks (FCNs) remain crucial for pixel-level predictions, with U-Net’s encoder–

decoder architecture and skip connections making it highly effective for medical image localization tasks, while FCNs 

are more suited for broader semantic segmentation[22] [23]. Transfer learning has become indispensable in adapting 

pre-trained models to specialized medical applications with limited annotated data, reducing training time while 

improving diagnostic accuracy, and when combined with few-shot learning, it yields even greater performance 

gains[24] [25]. Meanwhile, 3D Convolutional Neural Networks (3D-CNNs) expand the analysis to volumetric imaging 

such as CT, MRI, and dynamic thermography, capturing both spatial and temporal dependencies with high 

precision[26] [27]. Finally, attention mechanisms mimic human cognitive focus by directing the model toward the most 

relevant regions of input data, thereby improving feature extraction, enhancing interpretability, and increasing 

diagnostic reliability [28] [29]. Together, these deep learning approaches demonstrate a transformative role in medical 

imaging and hold particular promise for breast thermography-based cancer detection. Breast thermography as a 

method for early cancer detection has recently been explored and improved by researchers in various countries. A 

number of researchers' studies, published in prestigious international journals, are reviewed here.     

Tang et al., 2025 [30] presents a “multi-input lightweight CNN” called “Multi-light Nett” for more accurate early 

detection of breast cancer. It combines thermal image from various angles with a lightweight CNN based on model 

performance and scale. In addition, a novel weighted label smoothing regularisation (WLSR) is proposed for the Multi-

light Nett to improve the network's generalisation and classification accuracy. The experimental results show that the 

proposed strategy, which combines front and side views, outperforms the typical approach that just uses the front view. 

In addition, the Multi-light Nett outperforms the currently popular lightweight CNNs. 

Attallah, 2025 [31] presented an innovative “computer-aided diagnosis” (CAD) system, “Thermo-CAD”, that uses 

thermal imaging to detect early breast cancer.To improve accuracy, the system uses multiple convolutional neural 

networks (CNNs).Non-negative matrix factorisation and Relief-F are two approaches for integrating and reducing the 

dimensionality of deep data.The Thermo-CAD system was evaluated using two datasets: the DMR-IR, which 

distinguishes normal from diseased breast tissues, and a unique thermography dataset that distinguishes benign from 

malignant instances.The system achieved 100% accuracy on the DMR-IR dataset using the CSVM and MGSVM 

classifiers.However, it demonstrated a reduced capacity to discriminate between benign and malignant patients, with 

a CSVM accuracy of 79.3%. 

Bani Ahmad et al., 2025 [32] produced A new way to use deep learning to diagnose breast cancer was based on 

thermography images. This method fixes some of the problems with mammograms, such as their cost and the radiation 

they give off. The “Rock Hyraxes Dandelion Algorithm Optimization” (RHDAO) optimizes a thresholding value to 

segment images after they have been preprocessed with CLAHE. StackVRDNet is a new deep learning architecture that 
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uses VGG16, ResNet, and DenseNet to do the classification. The RHDAO is used to improve the weights and parameters 

of these models, which makes them better at diagnosing.  The model that came out of it was 97.05% accurate and 

86.86% precise in simulations. 

Veerlapalli and Dutta , 2025 [33] suggested combining a framework between a “Generative Adversarial Network” 

and a “Hybrid Deep Learning” model as novel deep learning. to use thermogram images to detect breast cancer.  The 

proposed framework exceeds traditional deep-learning models by attaining a 98.56% accuracy rate, as validated 

through experiments on the DMR-IR benchmark dataset. The goal is to raise the bar for diagnostic accuracy by 

combining important ROIs and using deep feature extraction to make classification better. 

Alzahrani et al., 2025 [34] suggests an automated classification method that employs "convolutional neural 

networks" (CNNs) to distinguish between cancerous and normal thermographic breast images. An Enhanced Particle 

Swarm Optimization (EPSO) method is employed to automatically optimize CNN hyperparameters, minimizing 

manual effort and enhancing computational efficiency. To improve classification performance, the system uses 

advanced image preprocessing methods like Mamdani fuzzy logic-based edge detection, “Contrast-Limited Adaptive 

Histogram Equalization” (CLAHE) for improving contrast, and median filtering for reducing noise. The suggested 

framework has a classification accuracy of 98.8%, which is better than traditional CNN implementations in terms of 

speed and accuracy. 

Munguía-Siu et al., 2024 [35] Introduced hybrid “convolutional neural network-recurrent neural network” (CNN-

RNN) models for identifying tumor anomalies in dynamic breast thermography images. Five advanced pre-trained 

CNN architectures were combined with three RNNs. The optimal hybrid architecture was VGG16-LSTM, exhibiting a 

specificity of 98.68%, an accuracy of 95.72%, and a sensitivity of 92.76%, with a CPU runtime of 3.9 seconds. AlexNet-

RNN was the fastest model, with a CPU runtime of 0.61 s and performance of 92.76% specificity, 68.52% sensitivity, and 

80.59% accuracy, still outperforming stand-alone AlexNet. The findings show that “CNN-RNN” hybrid models perform 

better than standalone CNN models, which means that dynamic breast thermographs can have their temporal data 

recovered without a major impact on classifier runtime. 

Hanieh et al., 2024 [36] examines the process of extracting features from a dataset of thermographic photographs 

using a CNN technique. The initial stage was to use the CNN network to get a feature vector from the pictures. The 

following stage is to use machine learning to sort the pictures. The study utilized four distinct classification methods to 

identify breast cancer from thermographic images: KNN (94.1% accuracy), “fully connected neural network” (FCnet) 

(94.2% accuracy), “support vector machine” (SVM) (95% accuracy), and “classification linear model” (CLINEAR) (95% 

accuracy). Additionally, the sensitivity of these classifiers were determined to be 95.5% for FCnet , 94.1% for SVM , 

90.4% for CLINEAR , and 93.2% for KNN, while the reliability parameters were determined to be 92.1% for FCnet, 97.5% 

for SVM, 96.5% for CLINEAR, and 91.2% for KNN. These results can help experts create an expert approach for 

diagnosing breast cancer. 

Shojaedini and Bahramzadeh, 2024[37] presents an innovative method that uses deep autoencoder ideas to remove 

unnecessary or damaging information from synthetic thermograms while maintaining important and independent 

properties. As a result, the suggested method improves the representation of artificial pictures for deep network 

training, which improves thermogram diagnosis of breast cancer. When compared to benchmark approaches, the 

suggested method's performance on the DMR-IR dataset demonstrates a notable enhancement in thermogram detection 

of malignant breasts. The basic model of the innovative integration, the average accuracy, sensitivity, and specificity 

increased to 92.3%, 93%, and 91.4%, respectively, exceeding the basic model's 89.1%, 86%, and 92.5%. reduced difference 

between the training and validation curves showed that the suggested approach performed better at preventing over-

fitting, leading to a 7% gain in accuracy and a 3.2% increase in sensitivity. Even though the specificity decreased by 

1.1%, other parameter improvements exceeded. 

Ahmed et al., 2024 [38] uses a pre-trained VGG16 convolutional neural network and transfer learning to suggest 

deep learning (DL) model utilizing the most advanced technique. Thermal image from the (DMR-IR) Database for 

Research are used by authors to train and assess the model. To enhance model performance, they also employ 

normalization and augmentation techniques. The DL-based model predicted BC lesions with a promising 99.4% 

(accuracy) detection rate. In comparison to earlier models, it has AUC-ROC of 99.8%, specificity of 97.5%, precision of 

98.9%, F1-Score of 99.8%, recall of 99%, and a sensitivity of 100%.  

Al Husaini et al., 2024 [39] developed a system that improves breast cancer classification accuracy by using in situ 

cooling support and preserving spatial features. The framework uses Deep Learning models and real-time 
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thermography video streaming to find breast cancer early. Inception v3, Inception v4, and a changed version of 

Inception Mv4 were all made with MATLAB 2019.  However, a mobile phone was connected to a thermal camera to 

take pictures of the breast area so that normal and diseased breast tissue could be told apart. The study's training dataset 

consisted of 1000 thermal photos, of which 300 were suitable for the abnormal class and 700 were deemed appropriate 

for the normal breast thermography class. The Deep Convolutional Neural Network models that are tested include 

Inception version 3 (v3), Inception version 4 (v4), and a modified version called modified Inception version 4 (Mv4). 

The results show that Inception Mv4 can accurately identify even the smallest temperature differences in breast tissue 

sequences in real time, with an accuracy of 99.748%. Inception version 3 and Inception version 4, on the other hand, had 

accuracies of 96.8% and 99.712%, respectively. The in situ cooling gel used for thermal imaging made breast imaging 

more effective. A 0.1% rise in tumor surface temperature led to a 7% rise in accuracy for detection and classification . 

Mohammed Jawad Khudhur, 2024[40] suggests employing an improved “Deep Convolutional Neural Network” 

(DCNN) to detect and diagnose breast cancer early and accurately. Researcher employs a DCNN with 12 stacked 

processing layers, enhancing diagnostic and detection accuracy compared to prior methodologies. The Mini 

Mammographic Database (MIAS) serves as the dataset for assessing the efficacy of the proposed system. The findings 

indicate that the Deep CNN achieves an impressive accuracy of 99.1%.  The advantages of the proposed DCNN-based 

approach are demonstrated through a comparison with analogous studies. 

Dihmani et al., 2024 [41] proposed a “computer-aided diagnostic” (CAD) scheme utilizing thermal imaging for 

breast cancer diagnosis and Explainable Artificial Intelligence. To enhance classification accuracy and interpretability, 

the authors employed a distinctive approach utilizing metaheuristic algorithms, specifically the “Hybrid Particle Swarm 

Optimization” (HPSO) and “Hybrid Spider Monkey Optimization” (HSMO). These strategies improved both feature 

selection and hyperparameter tweaking in the CAD system. Techniques employed for feature extraction included Gabor 

filters, “Histogram of Oriented Gradients” (HOG), “Local Binary Patterns” (LBP), and Canny edge detection. To 

enhance diagnostic accuracy, “dynamic infrared thermography” (DIT) images under controlled cooling conditions were 

incorporated into the “DMR-IR dataset”. The model achieved high performance metrics utilizing a 70-30 train-test split 

of patient images. Utilizing the HSMO, the system effectively identified cancerous tissues by thermographic analysis, 

attaining an F1-score of 98.15% and an accuracy of 98.27%, while selecting just 25.78% of HOG characteristics. 

Da Silva et al., 2024 [42] uses thermographic images and “convolutional neural networks” to tell the difference 

between breast cancer and other types of cancer. To do this, two methods are compared: one uses CNNs to get the 

original feature vectors, and the other uses Particle Swarm Optimization to make the vectors smaller for feature 

selection. The results show that both strategies work very well. The highest accuracy of 79.92% was achieved using full 

feature vectors with the Inception V3 convolutional neural networks (CNN) and a support vector machine with a third-

degree polynomial kernel. The Inception V3 CNN combined with a support vector machine using γ = 0.25 for the RBF 

kernel achieved the highest sensitivity and specificity scores, recording 100% sensitivity and 99.49% specificity. The 

same combination produced the highest AUC, which was 0.83. Using the Inception V3 CNN with a 4th-degree 

polynomial kernel and PSO-selected features, the highest accuracy was 78.55%. 

Nigam and Swarnkar, 2024 [43] suggested approach advocates for a deep learning methodology, specifically 

Convolutional Neural Networks (CNNs), for the detection of breast cancer. The goal was to create a CNN-based model 

for diagnosing breast cancer that could tell the difference between benign (non-cancerous) and malignant (cancerous) 

tumors. The study aimed to enhance the accuracy of early diagnosis, which is essential for effective treatment. authors 

used the “Discrete Wavelet Transform” (DWT) to analyze the images, and we made the images clearer and less noisy 

to make feature extraction more accurate. The images were classified as either benign or malignant using a CNN model, 

and the effectiveness of different classifiers—Support Vector Machine, Logistic Regression, and Random Forest—was 

compared. The proposed model identified both benign and malignant cases with an accuracy of up to 85%. 

Ahmad et al., 2024 [44] suggested a “computer-aided diagnostic” (CAD) system based on deep learning that would 

make it easier to find breast cancer by finding and classifying tumors. authors used advanced technologies like 

BreastNet-SVM for classification, Associat-ed-ResUNets for hashing, and YOLO networks for detection. Researchers 

showed that the system could do better than other technologies by getting 98.5% of tumors detected correctly and 

99.16% of tumors classified correctly. 

Wang et al., 2024 [45] proposed a novel model termed “DeepClinMed-PGM”, which stands for “Deep Learning 

Clinical Medicine Based Pathological Gene Multi-modal”, designed to predict DFS by integrating “clinicopathological 

data with molecular insights”.   The external testing group had 95 people, the internal validation group had 184 people, 
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and the training group had 741 people.   The AUC values for 1-, 2-, and 3-year DFS predictions were 0.851, 0.878, and 

0.938 in the external cohort and 0.979, 0.957, and 0.871 in the training cohort. Strong dis-criminative skills were shown 

by the external cohort (HR 0.061, 95% CI 0.017–0.218, P < 0.0001), internal validation cohort (HR 0.117, 95% CI 0.041–

0.334, P < 0.0001), and training cohort (HR 0.027, 95% CI 0.0016–0.046, P < 0.0001). The C-index scores were 0.864, 0.823, 

and 0.925. 

Tsietso et al., 2023 [46] demonstrate a tool called thermal infrared-based “computer-aided diagnosis” (CADx) that 

is cheaper, safer, and better for kids. Most “CADx” systems use frontal breast thermograms, so they probably won't 

find lesions that grow on the sides. These systems also often miss important clinical data, like risk factors. The author 

introduces an innovative CADx system for breast cancer detection utilizing deep learning methodologies. The system 

has a lot of different views of the breast thermogram and the clinical information that goes with it to make the diagnosis 

more accurate. The author explains how the system works, such as how transfer learning is used to train three different 

models and how regions of interest are found in photos. The results show that multi-input models are better than single-

input models. They have an AUROC curve of 0.94, a sensitivity of 93.33%, and an overall accuracy of 90.48%. 

Husaini et al., 2023 [47] suggests a method for the early diagnosis of breast cancer that makes use of “deep learning 

models and real-time thermography video streaming”. The framework uses “Inception v3”, “v4”, and a “modified 

Inception Mv4” of deep convolutional neural network models to classify normal and abnormal breasts. It is 

implemented in MATLAB 2019 with infrared camera and records high-quality real-time video streams. The findings 

show that the Inception Mv4 model can efficiently identify even the smallest temperature differences in tissue of the 

breast by producing a series of infrared image taken from various perspectives when paired with real-time video 

streaming. Adding cooling gel to the breast area makes the contrast even better, which helps with accurate detection 

and an effective picture acquisition process. In addition, the study shows that a small rise in the temperature of the 

tumor surface area of 0.1% can lead to an average gain of 7% in detection and classification accuracy. 

Ali et al., 2023 [48] introduces the “Enhanced Channel-Wise Attention Mechanism” (ECAM), a deep learning 

analysis tool for “breast invasive ductal carcinoma” (BIDC) histopathology images. The study's primary objectives are 

to augment computational efficiency by employing a separable Convolutional Neural Networks architecture, to 

improve data representation via hierarchical feature aggregation, and to enhance accuracy and interpretability through 

channel-wise attention mechanisms. The developed ECAM model was compared to DenseNet121, VGG16, and AlexNet 

using two publically available datasets, BreakHis and DataBioX IDC. On the IDC dataset, the proposed ECAM model 

obtained an F1-score of 96.65% and an exceptional accuracy rate of 96.70%. Once again, the proposed ECAM model 

performed exceptionally well on the BreakHis dataset, with an accuracy rate of 96.33% and an F1-score of 96.37%. 

Khan et al., 2023 [49] suggest a thermal imaging-based model to identify breast cancer. Create a personalized CNN-

based machine learning model that has been trained on different thermal image datasets showing breast problems. Use 

thermal image processing algorithms to predict breast cancer based on outside signs. To find images that cause cancer, 

segmentation, texture-based feature extraction, and image classification are used. Use 2D CNNs and activation 

algorithms to mix ResNet with parts of GoogleNet to make a custom classifier. Add layers for maxpooling and batch 

normalization. Use DMR-IR images to teach the model.  The proposed 2D CNN classifiers surpassed CNN (71%) and 

SVM (91%), attaining a 95% classification rate. 

Alshehri and AlSaeed, 2023 [50] proposed a novel approach for breast cancer diagnosis that integrates deep 

attention mechanisms (AMs) in thermal imaging with pre-trained VGG16 convolutional neural networks. Three 

different kinds of AMs were used to make the classification more accurate and the feature extraction process better: 

hard attention, self-attention, and soft attention. The authors used the DMR-IR dataset, which had “1542 thermal 

images” of 56 patients' breasts. Of these, 762 showed malignant cases and 780 showed healthy cases. To get around the 

limits of the dataset, data augmentation techniques were used to make a bigger dataset with 4146 photos. The VGG16 

model with hard attention had the highest accuracy at 99.80%, followed by self-attention at 99.49% and soft attention at 

99.32%. This method performed better than previous research, demonstrating how AMs can greatly improve thermal 

imaging for breast cancer diagnosis. 

Torres-Galván et al., 2022 [51] proposed “automatically classify thermograms as normal and abnormal using a 

deep convolutional neural network with transfer learning” model . A sample of “311 females” subjects was used to test 

the CNN's performance in two ways: one in a typical screening co-hort with a low number of unusual thermograms, 

and the other with a balanced class distribution.  The transfer-learned ResNet-101 model exhibited a sensitivity of 

92.3% and a specificity of 53.8%. In contrast, the corresponding values were a sensitivity of 84.6% and a specificity of 
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65.3%, characterized by an imbalanced distribution. archived accuracy of balanced class is 73.1% and unbalanced class 

is 74.9%. 

Mammoottil et al., 2022  [52] demonstrates a “convolutional neural network”-based model that uses the Visual 

DMR dataset to identify breast cancer by utilising several thermal images of the breast. The clinical data is then used to 

confirm these models' performances. Results show that the model's performance improved when clinical data 

judgements were added. The model that had the same architecture for all three views fared the best after two models 

with different architectures were constructed and tested. With the addition of the clinical data decision, its accuracy 

rose from 85.4% to 93.8%. When selecting sick patients as the positive class, the model was able to classify more patients 

properly with a sensitivity of 88.9 % and specificity of 96.7% after adding clinical data decisions. 

Mohamed et al., 2022 [53] suggest a method that detects breast cancer entirely automatically. Initially, the breast 

region is automatically separated and isolated from the rest of the body that acts as noise in the detection model of 

breast cancer, using the U-Net network. Second, author provides a two-class deep learning model for the categorisation 

of normal and pathological breast tissues using thermal pictures. This model is trained from scratch. Additionally, it is 

employed to extract additional features from the dataset that aid in network training and enhance classification process 

efficiency. When tested on database (DMR-IR), the suggested system obtained 99.33% accuracy, 100% sensitivity, and 

98.67% specificity. 

Ensafi et al., 2022 [54] propose a novel method for combining many thermography imaging views to enhance the 

diagnosis of breast cancer. The technique uses pre-trained deep learning architectures with transfer learning to merge 

frontal-45, lateral-45, and lateral views of thermal images. Improving these algorithms' ability to identify breast cancer 

was the aim. In comparison to existing deep learning or handcrafted methods, the suggested method produced a 

specificity increase of 2-30%and a sensitivity increase of 2-15%. In particular, compared to using only the frontal view, 

the sensitivity increased to 2 and the specificity reached 1 when lateral views were included. The suggested approach 

performed at least 2% better in terms of sensitivity and specificity than alternatives when it came to differentiating 

between healthy and malignant tissues. 

Dey et al., 2022 [55] suggest system to detect breast cancer that can identify the disease by using thermal breast 

imaging. Here, the author builds a classifier for the stated objective by using the DenseNet121 pre-trained model to 

extract the feature. The author work with the original thermal image of breast to obtain outputs utilising two edge 

detectors, Prewitt and Roberts, prior to feature extraction. The original image and these two edge-maps combine to 

form the DenseNet121 model's 3-channel input. the model's performance is assessed using the “Database for Mastology 

Research (DMR-IR)”, a collection of thermal breast images. On the aforementioned database, the author achieved 

98.80% as highest classification accuracy. 

Aidossov et al., 2022 [56] Develop CNN methods to diagnose breast tumours with intelligence and precision. Breast 

thermograms obtained from a multicenter database were used for binary classification without any preprocessing is the 

work's primary innovation. The findings in this research demonstrate the effectiveness and use of deep learning for 

thermogram standardisation. It is discovered that the constructed model can achieve 80.77% accuracy, 44.44% 

sensitivity, and 100% specificity. 

Alshehri and AlSaeed, 2022  [57] Assess the degree to which attention mechanisms (AMs) combined with 

convolutional neural networks (CNNs) can produce adequate detection outcomes for thermal breast cancer photos. The 

authors use thermal pictures from the Database (DMR-IR) to demonstrate a deep neural network-based breast cancer 

detection model with AMs. The model's accuracy, sensitivity, and specificity will be assessed, and it will be contrasted 

with the most advanced techniques for detecting breast cancer. On the breast thermal dataset, the AMs using the CNN 

model had positive test accuracy rates of 99.46%, 99.37%, and 99.30%. CNNs without AMs had a test accuracy of 92.32%, 

but CNNs with AMs improved their accuracy by 7%.  

Houssein et al., 2021 [58] suggested a novel and effective version of the well-known chimp optimization technique 

(ChOA): the opposition-based Lévy Flight chimp optimizer (IChOA).  Opposition-based learning (OBL) is used to 

expand the population variety of ChOA, while the Lévy Flight is used to improve its exploitation.  The IChOA is used 

to solve the picture segmentation problem using multilevel thresholding. The Otsu and Kapur techniques were used to 

test the method on the DMR-IR database. It was then compared to seven other meta-heuristic algorithms: ChOA, SSA, 

SCA, WOA, MFO, GWO, and EO.   When it came to separating different positive and negative examples, IChOA did 

better than its competitors in terms of accuracy, consistency, quality, and evaluation matrices like FSIM, SSIM, and 

PSNR. 
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Zadeh et al., 2021[59] proposed a novel approach to breast cancer diagnosis that extracts features from thermal 

imaging using a dynamic segmentation model and classifies data using a deep autoencoder neural network. The 

method employs a semi-automated procedure to identify breast areas according to their morphological characteristics 

by extracting eight statistical factors from thermography images. An unsupervised deep-learning autoencoder 

processes these traits to tell the difference between cancerous and healthy tissues. The authors achieved an impressive 

accuracy rate of 94.87% and a specificity of 96.77% by validating their method on a dataset of 196 individuals. This 

demonstrated the model's capability to accommodate various breast morphologies and accurately identify anomalies. 

Ucuzal et al., 2021 [60] designed a system using pre-trained networks to classify breast cancer from thermographic 

images. The dataset, which was converted from.txt to.jpeg format, contained 179 healthy images and 101 patients 

(source: http://visual.ic.uff.br/dmi/). After testing a number of pre-trained models, ResNet50V2 produced the best 

accuracy, 99.6%. Medical professionals can now more effectively detect breast cancer thanks to an interface designed as 

a computer-aided diagnosis tool. 

Sánchez-Ruiz et al., 2020 [61] suggested approach divides the area of interest using statistical operators, local 

operations, and overlap. First- and second-order statistics are then used to extract features. These characteristics are 

then used to train an artificial neural network (ANN). The approach produced competitive accuracy values ranging 

from 90.17% to 98.33% when tested on a popular image database. The study addresses the drawbacks of conventional 

mammography and emphasizes the benefits of breast thermography as a low-cost, non-invasive screening method. The 

outcomes demonstrate how well the suggested approach works to increase the precision of thermograph-based breast 

cancer detection. 

Silva et al., 2020 [62] suggest a computational approach that uses supervised and unsupervised machine learning 

approaches to analyses breast dynamic image of thermography infrared in order to identify patients for breast 

abnormalities. A benign tumor or a malignant tumor (cancer) might be an anomaly. The author uses accuracy, 

sensitivity, specificity, and the area under the ROC curve as performance metrics. With an accuracy of 98.57%, the K-

Star classifier produces the best results. The findings support the suggested method's potential for screening patients 

for breast abnormalities. 

Ekici and Jawzal, 2020  [63] Develop system for automatic breast cancer detection that analyses thermal breast 

photos using image processing methods and algorithms to find illness indicators, enabling early breast cancer 

identification. A novel approach based on bio-data, image statistics, and image analysis is put forth for the extraction 

of breast distinctive features. CNNs optimised by the Bayes algorithm will be used for breast image classify as 

suspicious or normal based on these attributes that were retrieved from the thermal images. The accuracy rate of the 

suggested approach was 98.95% for the thermal pictures in the dataset that included 140 people. 

Khomsi et al., 2020 [64] presents a new way to use superficial thermography to find breast cancer early.  The 

authors conceptualized the breast as a multi-layered structure exhibiting varying thermal properties and utilized 

COMSOL Multiphysics software to simulate temperature gradients induced by tumors within breast tissue. To test 

these models in a lab, they made a breast imaging phantom out of organic materials that simulate the thermal and 

physical properties of real tissue. They put heat sources in different places and depths to make tumors. A heating control 

system kept the temperature of these model tumors at a certain level. Thermography is a potential non-invasive and 

affordable method for early breast cancer detection, as evidenced by the results showing that thermographic devices 

could accurately detect minute temperature changes on the surface. 

6. Comparative Summary of Reviewed Studies  

This section gathers all of the studied studies into a structured comparison to provide a better understanding of 

the various studies. Table 2 compiles datasets, methods, advantages, disadvantages, and evaluated performance. 

Note: The "Results" column shows a summary of other performance measures like sensitivity, specificity, precision, 

and F1-scores. Accuracy values are shown in a separate column. 
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Table 2: Comparative Summary 

Cite Dataset 
Algorithm / 

Technique 
Advantage Disadvantage Results Accuracy 

Tang et 

al., 2025 

[30] 

Thermogra

phy dataset 

Multi-light 

Net (multi-

input 

lightweight 

CNN) 

Lightweight, 

efficient, 

suitable for 

limited 

resources 

Slightly lower 

than heavier 

models; 

requires careful 

tuning 

Balanced 

sensitivity and 

specificity with 

strong overall 

performance 

~96% 

Attallah, 

2025 [31] 

DMR-IR 

and novel 

dataset 

Multi-CNN 

CAD + feature 

transformatio

n (NMF + 

Relief-F) 

Multi-dataset 

testing; 

interpretable 

CAD system 

Lower 

performance on 

benign vs 

malignant cases 

100% accuracy 

(normal vs 

abnormal, DMR-

IR); 79.3% 

(benign vs 

malignant, new 

dataset) 

100% / 

79.3% 

Bani 

Ahmad et 

al., 2025 

[32] 

Thermogra

phy dataset 

StackVRDNet 

(VGG16 + 

ResNet + 

DenseNet + 

RHDAO 

heuristic 

optimizer) 

High accuracy, 

hybrid 

ensemble 

improves 

robustness 

Complex 

architecture; 

higher training 

time 

Precision 86.86%, 

strong feature 

weighting 

97.05% 

Veerlapall

i and 

Dutta , 

2025 [33] 

Breast 

thermograp

hy dataset 

Hybrid GAN 

+ DL classifier 

Tackles dataset 

scarcity with 

synthetic data; 

boosts 

classification 

GAN training 

instability; 

requires more 

computation 

Enhanced 

classification 

performance; 

improved 

sensitivity and 

specificity 

~96–98% 

Alzahrani 

et al., 2025 

[34] 

Thermogra

phic images 

(public) 

CNN + 

Enhanced 

Particle 

Swarm 

Optimization 

(EPSO) + 

preprocessing 

(CLAHE, 

fuzzy edge 

detection, 

median filter) 

Automated 

CAD, improved 

hyperparameter 

tuning, better 

preprocessing 

Requires high 

computational 

resources, 

complex 

pipeline 

Improved CNN 

performance 

compared to 

baseline; strong 

sensitivity & 

specificity 

~97–99% 

Munguía-

Siu et al., 

2024 [35] 

Dynamic 

thermograp

hy 

sequences 

(DMR-IR 

DIT 

protocol) 

VGG16 + 

LSTM 

(Hybrid 

CNN–RNN) 

Captures both 

spatial and 

temporal 

features from 

dynamic 

sequences 

Requires 

sequential 

inputs and 

more complex 

modeling 

Outperformed 

single CNNs; 

hybrid models 

improved 

classification 

performance 

95.72% 

Hanieh et 

al., 2024 

[36] 

Thermogra

ms 

CNN + 

Machine 

learning 

(FCnet, SVM, 

High accuracy 

and reliability 

Requires large 

datasets for 

training 

Reliability: 

91.2%–97.5%; 

Sensitivity: 

90.4%–95.5% 

94.1-95.0% 
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CLINEAR, 

KNN) 

 

Shojaedin

i and 

Bahramza

deh, 

2024[37] 

Synthetic 

thermogra

ms 

Deep 

autoencoders 

Improved 

feature 

representation 

and detection 

accuracy 

Requires 

synthetic data 

generation 

Significant 

improvement in 

detection accuracy 

92.3% 

Ahmed et 

al., 2024 

[38] 

DMR-IR 

VGG16 with 

transfer 

learning 

High accuracy, 

sensitivity, 

specificity, and 

other metrics 

Requires large 

datasets and 

computational 

resources 

F1: 99.8%; 

Precision: 98.9%; 

Recall: 99%; 

Specificity: 97.5%; 

Sensitivity: 100%;  

99.4% 

Al 

Husaini et 

al., 2024 

[39] 

Real-time 

thermograp

hy videos 

Inception v3, 

v4, modified 

Inception 

Mv4 

Real-time 

detection, high 

accuracy, 

enhanced with 

in-situ cooling 

Requires 

specialized 

hardware and 

software 

High accuracy 

(96.8-99.748%) 
99.7% 

Mohamm

ed Jawad 

Khudhur, 

2024  [40] 

MIAS DCNN 
High accuracy, 

early detection 

Requires large 

datasets and 

computational 

resources 

High accuracy 

(99.1%) 
99.1% 

Dihmani 

et al., 2024 

[41] 

DMR-IR 

Hybrid PSO 

and SMO, 

XAI 

Interpretable, 

high accuracy, 

feature 

selection 

Complex 

optimization 

process 

High accuracy 

(98.27%), high F1-

score (98.15%) 

98.27% 

da Silva et 

al., 

2024[42] 

Thermogra

ms 

CNNs with 

PSO for 

feature 

selection 

High accuracy, 

sensitivity, and 

specificity 

Requires 

careful feature 

selection 

High accuracy 

(78.55-79.92%), 

high sensitivity 

and specificity 

78.55-

79.92% 

Nigam 

and 

Swarnkar, 

2024 [43] 

Thermogra

ms 

CNNs with 

DWT 

Improved 

image quality 

and feature 

extraction, high 

accuracy 

Requires 

careful data 

preprocessing 

and model 

training 

High accuracy (up 

to 85%) 
Up to 85% 

Ahmad et 

al., 2024 

[44] 

Medical 

images 

YOLO, 

ResUNet, 

BreastNet-

SVM 

High accuracy 

in detection and 

classification 

Requires large 

datasets and 

computational 

resources 

98.5% detection 

accuracy, 99.16% 

classification 

accuracy 

98.5%, 

99.16% 

Wang et 

al., 2024 

[45] 

Multi-

modal data 

(pathology 

imaging, 

molecular, 

clinical) 

DeepClinMed

-PGM 

Improved DFS 

prediction, 

robust 

performance 

across cohorts 

Requires large 

and diverse 

datasets 

High AUC values, 

low hazard ratios 

Not 

explicitly 

stated 

Tsietso et 

al., 2023 

[46] 

clinical data  

, 

Thermal 

infrared 

images 

Deep learning 

Incorporates 

multiple views 

and clinical 

data 

May miss 

lesions on the 

sides, 

disregards some 

clinical data 

accuracy 

90.48%AUROC 

0.94, sensitivity 

93.33%, 

90.48% 
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Husaini et 

al., 2023 

[47] 

Real-time 

thermograp

hy videos 

Inception v3, 

v4, modified 

Mv4 

Real-time 

detection, high 

accuracy, 

enhanced with 

in-situ cooling 

Requires 

specialized 

hardware and 

software 

High accuracy 

(96.8-99.748%) 
99.748% 

Ali et al., 

2023 [48] 

Histopathol

ogical 

images 

(IDC and 

BreakHis) 

ECAM 

(Enhanced 

Channel-Wise 

Attention 

Mechanism) 

High accuracy, 

improved 

feature 

representation, 

computational 

efficiency 

Requires large 

and diverse 

datasets 

High accuracy 

and F1-scores on 

both datasets 

96.65% 

(IDC), 

96.33% 

(BreakHis) 

Khan et 

al., 2023 

[49] 

Thermal 

images 

Customized 

2D CNN 

High accuracy, 

improved 

classification 

Requires 

careful data 

preprocessing 

and model 

training 

High accuracy 

(95%) 
95% 

Alshehri 

and 

AlSaeed, 

2023 [50] 

Thermal 

images 

VGG16 with 

AMs 

High accuracy, 

improved 

performance 

over baseline 

VGG16 

Requires 

careful tuning 

of AMs 

High accuracy 

(99.32-99.80%) 
99.80% 

Torres-

Galván et 

al., 2022  

[51] 

Thermogra

ms 

Deep 

convolutional 

neural 

network , 

transfer 

learning 

High sensitivity 

for abnormal 

thermograms 

Lower 

specificity, 

especially with 

unbalanced 

distribution 

Sensitivity of 

92.3%, specificity 

of 53.8% 

(balanced), 

sensitivity of 

84.6%, specificity 

of 65.3% 

(unbalanced) 

balanced 

class: 

73.1% 

unbalance

d: 74.9% 

Mammoot

til et al., 

2022 [52] 

Visual 

DMR 

dataset 

Convolutiona

l neural 

networks 

Improved 

performance 

with clinical 

data 

Limited public 

datasets for 

thermography 

Accuracy  85.4% 

before clinical 

data, 93.8% after 

clinical data 

93.8% 

Mohamed 

et al., 2022 

[53] 

Real data 

(DMR-IR) 

U-Net for 

breast area 

extraction, 

two-class 

deep learning 

model 

Fully automatic, 

high accuracy 

Not explicitly 

stated 

Accuracy of 

99.33%, 

sensitivity of 

100%, specificity 

of 98.67% 

99.33% 

Ensafi et 

al., 2022 

[54] 

DMR-IR 

(Database 

for 

Mastology 

Research) 

Multiple 

views of 

thermograms 

with transfer 

learning 

Improved 

sensitivity and 

specificity 

through multi-

view fusion 

Requires 

combining 

different 

thermogram 

views 

increase 

Sensitivity 2-15% 

, increase 

specificity 2-30% 

over single-view 

models 

up to 93% 

Dey et al., 

2022 [55] 
DMR-IR 

DenseNet121 

with edge 

detection 

High accuracy; 

edge detection 

enhances 

Preprocessing 

adds 

complexity 

Highest 98.80% 

classification 
98.80% 
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feature 

extraction 

accuracy on 

dataset DMR-IR 

Aidossov 

et al., 2022 

[56] 

Multicenter 

database 

(unnamed) 

CNNs 

without 

preprocessing 

Simple 

implementation

; non-invasive 

method 

Low sensitivity 

Useful for 

standardized 

analysis; accuracy 

of 80.77% 

80.77% 

Alshehri 

and 

AlSaeed, 

2022 [57] 

DMR-IR 

CNNs with 

Attention 

Mechanisms 

(AMs) 

Improved 

accuracy with 

attention 

mechanisms 

Requires high 

computational 

resources 

test Achieved 

accuracy 99.46%, 

99.37%, and 

99.30% 

99.46% 

Houssein 

et al., 2021 

[58] 

DMR-IR 

Opposition-

based Lévy 

Flight Chimp 

Optimization  

Efficient 

segmentation; 

improved 

convergence 

Algorithm 

complexity and 

potential 

stagnation 

Outperformed 

seven meta-

heuristic 

algorithms in 

segmentation 

quality 

Not 

directly 

applicable 

Zadeh et 

al., 

2021[59] 

Database 

for 

Mastology 

Research 

(Brazil): 196 

subjects, 41 

with cancer 

and 155 

healthy, 

1,960 

thermograp

hy images 

total 

Deep 

autoencoder 

neural 

network 

High specificity 

(96.77%) and 

robustness 

across various 

breast 

morphologies; 

non-invasive 

Imaging 

sequence 

sensitive to 

positional 

changes, 

requires a 

stable patient 

position 

Successfully 

classified 

abnormal vs. 

normal 

thermograms 

94% 

Ucuzal et 

al., 2021 

[60] 

Public 

dataset 

Pre-trained 

networks 

(ResNet50V2) 

High accuracy; 

pre-trained 

networks 

reduce training 

time 

Dataset 

limitations 

Best classification 

performance with 

ResNet50V2 

99.6% 

Sánchez-

Ruiz et 

al., 2020 

[61] 

Widely 

used image 

database 

ANN with 

local and 

statistical 

operations for 

ROI 

segmentation 

Non-invasive, 

low-cost 

screening; high 

accuracy with 

ANN 

Limited 

generalization 

for new datasets 

Achieved 

competitive 

accuracy results 

ranging from 

90.17% to 98.33% 

90.17%-

98.33% 

Silva et 

al., 

2020[62] 

Dynamic 

Infrared 

Thermogra

phy images 

K-Star 

classifier 

Effective 

screening tool; 

high specificity 

Limited 

sensitivity for 

certain cases 

Best results with 

an accuracy of 

98.57% 

98.57% 

Ekici and 

Jawzal, 

2020 [63] 

Thermal 

images 

dataset (140 

individuals) 

CNNs 

optimized by 

Bayes 

algorithm 

High accuracy 

in classification; 

early detection 

capabilities 

Bio-data 

requirements 

for feature 

extraction 

High 

classification 

accuracy achieved 

at 98.95% 

98.95% 

Khomsi et 

al., 2020 

[64] 

Simulated 

breast 

Surface 

thermography 

simulation 

Physical 

mimicry of 

breast tissue; 

Limited to 

simulated 

environment 

Demonstrated 

potential for early 

detection using 

N 



Dasinya Journal for Engineering and Informatics. 2025, 1, 5. 14 of 19 
 

 

imaging 

phantom 

using 

COMSOL 

early detection 

potential 

surface 

thermography 

7. Discussion  

The reviewed research demonstrate that deep learning has considerably improved the use of “thermal imaging” 

for breast cancer detection. The reported findings are consistently high, with most investigations obtaining accuracy 

above 90% and some nearing 100%. Transfer learning architectures, such as “VGG”, “ResNet”, and “Inception”, are still 

the most popular methods, but more recent advancements involve attention mechanisms, hybrid CNN-RNN models, 

and optimization-assisted frameworks. These approaches often outperform classic CNNs, highlighting the significance 

of model architectures and preprocessing methodologies in enhancing diagnostic outcomes. 

    Figure 2 shows the reported accuracies for each reviewed study from 2020 to 2025, ranked from highest to lowest. 

Almost all of trials obtained performance levels above 90%, with a few exceeding 99%. However, some research that 

used simpler CNNs or smaller datasets found more modest results, ranging from 75 to 85%. This distribution 

demonstrates the significant impact of dataset quality, class balance, and methodology design on reported findings. 

 

 

Figure 2: Accuracy reported by each reviewed study (2020–2025), sorted from highest to lowest 

Figure 3 categories results by technique and displays the average accuracy achieved across categories. Transfer 

learning techniques, attention-based CNNs, and hybrid models clearly outperform traditional CNNs and handmade 

approaches, with mean accuracies that are consistently higher. This illustrates how innovation in architecture design, 

particularly by the use of pre-trained models, the addition of attention mechanisms, or the combination of spatial and 

temporal modelling, immediately translates into improved classification reliability. 
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Figure 3: Average accuracy categories by deep learning technique across reviewed studies. 

Even though these results are very good, there are some limits that need to be acknowledged. First, the heavy 

reliance on the DMR-IR dataset in many studies makes it hard to apply the results to other situations. When models are 

tested on photos from other schools or devices, high claimed accuracies may not be a good indicator of how well they 

work in the real world. Several studies have shown high accuracies (≥99%), which should be viewed with caution. These 

kinds of results are often made with small or unbalanced datasets and without outside validation. These factors can 

artificially enhance performance while constraining clinical utility. Third, while generative models like GANs can solve 

data scarcity by creating synthetic thermograms, their use is limited due to training instability and computational cost. 

Similarly, real-time or multi-view thermography systems show promise, but they require larger and more diversified 

datasets for reliable validation. 

Overall, the literature shows that AI-driven thermography has a lot of potential as a non-invasive and cheap way 

to find breast cancer early, but more research is needed before it can be used in real life. Future endeavors must prioritize 

the development of larger, standardized, and multi-institutional datasets, the implementation of external validation 

processes, and the publication of clinically relevant metrics such as sensitivity, specificity, and AUC, alongside accuracy. 

Also, looking into underused methods like GANs for data augmentation, hybrid “CNN-RNNs” for dynamic 

thermography, and attention mechanisms that make it easier to extract features could be helpful. Addressing these 

limitations will bring the field closer to developing a reliable, explainable, and clinically trusted framework for breast 

cancer screening. 

8. Conclusion  

The study emphasizes the growing potential for enhancing early breast cancer detection by fusing deep learning 

methods with breast thermography. Models which include CNNs, GANs, U-Net, and transfer learning continuously 

demonstrated high accuracy, sensitivity, and specificity in interpreting thermal images in the research that was 

examined. These technologies offer a strong substitute for traditional imaging techniques, especially when non-

invasiveness, affordability, and accessibility are crucial considerations. The path to clinical adoption presents several 

challenges. Numerous studies utilize small or imbalanced datasets, and variations in imaging techniques may hinder 

model generalizability. Furthermore, while AI models demonstrate promise, their interpretability and incorporation 

into real-world diagnostic procedures require additional refinement.  

Future research should emphasize the creation of standardized, diverse thermographic datasets, explore 

multimodal imaging methodologies, and enhance AI models for transparency and clinical reliability.  Ongoing 

research and collaboration between the medical and technical sectors may render AI-enhanced thermography a feasible 

and scalable instrument for global breast cancer screening. 
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