A Review on Deep Learning Frameworks for Dental Anomaly and Disease Classification

Authors

Keywords:

Dental imaging; deep learning; convolutional neural networks (CNNs); vision trans-formers (ViT); Class imbalance; probability calibration.

Abstract

Oral anomalies and dental diseases affect billions of people worldwide, yet diagnosis often relies on manual interpretation of radiographs and clinical images, which is time-consuming and prone to variability. Advances in deep learning (DL) have opened new opportunities for accurate, efficient, and scalable dental diagnostics. This review examines state-of-the-art DL frameworks applied to dental imaging modalities, in-cluding intraoral RGB photographs, bitewing and periapical radiographs, panoramic radiography, and cone-beam computed tomography (CBCT). The analysis covers pre-processing pipelines, backbone architectures (convolutional neural networks and vi-sion transformers), task designs (classification, detection, segmentation, hybrid mod-els), and strategies for addressing data imbalance, calibration, and uncertainty. Find-ings reveal that modality-specific preprocessing enhances reliability, hybrid CNN-Transformer models improve performance for wide-field or complex tasks, and segmentation-assisted classification increases sensitivity to subtle lesions. Moreover, calibrated probability outputs, robust evaluation metrics (ROC-AUC, PR-AUC), and external validation are essential for clinical readiness. The review identifies critical gaps—limited cross-site generalization, under-reported calibration, and scarce re-al-world validation—and outlines future directions such as label-efficient learning, federated training, and calibration-first pipelines. With these safeguards, DL-based systems can evolve from experimental tools to trustworthy clinical aids that strength-en diagnostic accuracy and decision support in dentistry.

References

Organization, W.H. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; World Health Organization, 2022;

Bernabé, E.; Marcenes, W.; Hernandez, C.R.; et al. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017. Journal of Dental Research 2020, 99, 362–373, doi:10.1177/0022034520908533.

Whaites, E.; Drage, N. Essentials of Dental Radiography and Radiology; 6, Ed.; Elsevier, 2023; ISBN 9780702074610.

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.; 2021.

Liu, Z.; et al. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows.; 2021; pp. 9992–10002.

Zhu, J.; Chen, Z.; Zhao, J.; et al. Artificial Intelligence in the Diagnosis of Dental Diseases on Panoramic Radiographs: A Preliminary Study. BMC Oral Health 2023, 23, 358, doi:10.1186/s12903-023-03158-7.

Galić, I.; Habijan, M.; Leventić, H.; Romić, K. Machine Learning Empowering Personalized Medicine: A Comprehensive Review of Medical Image Analysis Methods. Electronics 2023, 12, 4411, doi:10.3390/electronics12194411.

Azizi, S.; Mustafa, B.; Ryan, F.; et al. Big Self-Supervised Models Advance Medical Image Classification.; 2022; pp. 3478–3488.

Shon, H.S.; Kong, V.; Park, J.S.; et al. Deep Learning Model for Classifying Periodontitis Stages on Dental Panoramic Radi-ography. Applied Sciences 2022, 12, 8500, doi:10.3390/app12178500.

Razi, T.; et al. Accuracy of Bone-Loss Measurement on Digital Panoramics vs Bitewings. Imaging Science in Dentistry 2022, 52, 167–175, doi:10.5624/isd.20210190.

Park, W.; Kim, H.; Lee, J.; et al. Deep Learning for Screening Multiple Oral Conditions from Intraoral Photographs. Scientific Reports 2022, 12, 16413, doi:10.1038/s41598-022-21055-3.

Alalharith, D.M.; et al. A Deep Learning-Based Approach for the Detection of Early Signs of Gingivitis in Orthodontic Patients Using Faster R-CNN. International Journal of Environmental Research and Public Health 2020, 17, 8447, doi:10.3390/ijerph17228447.

Liu, J.; et al. Deep Learning-Enabled 3D Multimodal Fusion of Cone-Beam CT and Intraoral Mesh Scans for Clinically Ap-plicable Tooth-Bone Reconstruction. Patterns 2023, 4, doi:10.1016/j.patter.2023.100825.

Han, X.; et al. Digital Registration versus Cone-Beam Computed Tomography for Evaluating Implant Position: A Prospective Cohort Study. BMC Oral Health 2024, 24, 304, doi:10.1186/s12903-024-03938-3.

Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with Lo-calizable Features. In Proceedings of the ICCV; 2019; pp. 6023–6032.

Zhang, H.; Cissé, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond Empirical Risk Minimization. In Proceedings of the ICLR; 2018.

Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the ICCV; 2017; pp. 2980–2988.

Abraham, N.; Khan, N.M. A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation. In Proceedings of the ISBI; 2019; pp. 683–687.

Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In DLMIA/ML-CDS (LNCS 10553); 2017; pp. 240–248.

Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On Calibration of Modern Neural Networks. In Proceedings of the ICML (PMLR); 2017; pp. 1321–1330.

Pitts, N.B.; et al. Bitewing Radiography for Proximal Caries—Best Practice. Community Dental Health 2019, 36, 206–214.

Farman, A.G.; Farman, T.T. Extraoral and Panoramic Imaging: Principles and Applications. Dental Clinics of North America 2008, 52, 715–728, doi:10.1016/j.cden.2008.03.003.

Baan, F.; Bruggink, R.; Nijsink, J.; Maal, T.; Ongkosuwito, E. Fusion of Intra-Oral Scans in Cone-Beam Computed Tomography Scans. Clinical oral investigations 2021, 25, 77–85.

Kim, Y.-J.; Ahn, J.-H.; Lim, H.-K.; Nguyen, T.P.; Jha, N.; Kim, A.; Yoon, J. Novel Procedure for Automatic Registration be-tween Cone-Beam Computed Tomography and Intraoral Scan Data Supported with 3D Segmentation. Bioengineering 2023, 10, 1326.

Buslaev, A.; Iglovikov, V.; Khvedchenya, E.; et al. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125, doi:10.3390/info11020125.

Hegazy, M.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting. Sensors 2023, 23, 1288.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition.; 2016; pp. 770–778.

Krichen, M.; Ketata, R.; Alshammari, R.; Alshammari, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151.

Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks.; 2017; pp. 4700–4708.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision.; 2016; pp. 2818–2826.

Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions.; 2017; pp. 1251–1258.

Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.; 2019; pp. 6105–6114.

Tan, M.; Le, Q.V.; Chen, B.; Pang, R.; Others EfficientNetV2: Smaller Models and Faster Training.; 2021; pp. 10096–10106.

Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A Convnet for the 2020s. In Proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2022; pp. 11976–11986.

Woo, S.; Debnath, S.; Hu, R.; Chen, X.; Liu, Z.; Kweon, I.S.; Xie, S. ConvNeXt V2: Co-Designing and Scaling ConvNets with Masked Autoencoders.; 2023.

Radosavovic, I.; Kosaraju, R.P.; Girshick, R.; He, K.; Dollár, P. Designing Network Design Spaces (RegNet).; 2020; pp. 10428–10436.

Carion, N.; Massa, F.; Synnaeve, G.; et al. End-to-End Object Detection with Transformers. In Proceedings of the ECCV; 2020.

Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. Journal of Big Data 2019, 6, 60, doi:10.1186/s40537-019-0197-0.

Hegazy, A.; et al. Metal-Artifact Reduction in Dental CBCT and Its Downstream Effects on Analysis. Physics in Medicine & Biology 2023, 68, 145007, doi:10.1088/1361-6560/ace8d8.

US Food and Drug Administration Good Machine Learning Practice for Medical Device Development: Guiding Principles. FDA webpage 2021.

Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks (Integrated Gradients).; 2017; pp. 3319–3328.

Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the NeurIPS; 2017.

Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Pro-ceedings of the ICML; 2016.

Ganin, Y.; Ustinova, E.; Ajakan, H.; et al. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research 2016, 17, 1–35.

Sun, B.; Saenko, K. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In Proceedings of the ECCV Workshops; 2016.

Wang, D.; Shelhamer, E.; Liu, S.; Olshausen, B.; Darrell, T. TENT: Fully Test-Time Entropy Minimization. In Proceedings of the ICLR; 2021.

Ikhwani, Y.; Noersasongko, E.; Soeleman, M.A.; others Comparative Performances of the Convolutional Neural Network Based Transfer Learning Models for Classification of Dental Disease. In Proceedings of the 2024 International Seminar on Application for Technology of Information and Communication (iSemantic); IEEE, 2024; pp. 445–450.

IHE Radiology Technical Committee IHE Radiology Technical Framework Supplement: AI Results (AIR). 2025.

Liu, J.; Liu, X.; Shao, Y.; Gao, Y.; Pan, K.; Jin, C.; Ji, H.; Du, Y.; Yu, X. Periapical Lesion Detection in Periapical Radiographs Using the Latest Convolutional Neural Network ConvNeXt and Its Integrated Models. Scientific Reports 2024, 14, 25429, doi:10.1038/s41598-024-75748-9.

Thalji, N.; Aljarrah, E.; Almomani, M.H.; Raza, A.; Migdady, H.; Abualigah, L. Segmented X-Ray Image Data for Diagnosing Dental Periapical Diseases Using Deep Learning. Data in Brief 2024, 54, 110539, doi:10.1016/j.dib.2024.110539.

Minderer, M.; Djolonga, J.; Romijnders, R.; Hubis, F.; Zhai, X.; Houlsby, N.; Tran, D.; Lucic, M. Revisiting the Calibration of Modern Neural Networks.; Curran Associates, Inc., 2021; pp. 15682–15694.

Downloads

Published

2025-10-12

How to Cite

Ali, D. A., & Sadeeq, H. T. (2025). A Review on Deep Learning Frameworks for Dental Anomaly and Disease Classification. Dasinya Journal for Engineering and Informatics, 1(1). Retrieved from https://dasinya.dpu.edu.krd/index.php/pub/article/view/13