Breast Cancer Detection Through Deep Learning and Breast Thermography: A Study of Review
Keywords:
Deep Learning, Breast Thermography, Thermal Imaging, Breast Cancer Detection, Medical ImagingAbstract
Breast cancer is an alarming worldwide health concern, and early detection is crucial for improving patient outcomes. This study explores the application of deep learning algorithms in breast thermography, a non-invasive and radiation-free imaging tech-nique, to enhance diagnostic accuracy. This research synthesizes peer-reviewed lit-erature from 2020 to 2025, focusing on various deep learning architectures, including CNNs, GANs, RNNs, U-Net, and transfer learning, in relation to thermographic da-tasets like DMR-IR and Visual DMR. The methodology employs a structured approach encompassing literature searches, criteria for inclusion and exclusion, data extraction, and synthesis. The findings indicate that deep learning significantly enhances seg-mentation, classification, and anomaly detection in thermal breast images, frequently surpassing traditional diagnostic techniques. While accuracy rates are promising, challenges persist, such as limitations in datasets, variability in images, and a lack of standardization. This study highlights the potential of AI-enhanced thermography as a cost-effective and scalable method for breast cancer screening, while also identifying key areas for further research to enhance generalizability and clinical application.
References
X. Jiang, Z. Hu, S. Wang, and Y. Zhang, “Deep Learning for Medical Image-Based Cancer Diagnosis,” Cancers, vol. 15, no. 14, p. 3608, Jul. 2023, doi: 10.3390/cancers15143608.
“Global cancer burden growing, amidst mounting need for services.” Accessed: Nov. 09, 2024. [Online]. Available: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
“Effectiveness of Breast Ultrasound for Breast Cancer Screening : A Systematic Review,” SciSpace - Paper. Accessed: Nov. 10, 2024. [Online]. Available: https://typeset.io/papers/effectiveness-of-breast-ultrasound-for-breast-cancer-5erj48lnmpx5
P. Basu, L. Zhang, R. Hariprasad, A. L. Carvalho, and A. Barchuk, “A pragmatic approach to tackle the rising burden of breast cancer through prevention & early detection in countries ‘in transition,’” Indian J. Med. Res., vol. 152, no. 4, pp. 343–355, 2020.
T. T. Ngan, N. T. Q. Nguyen, H. Van Minh, M. Donnelly, and C. O’Neill, “Effectiveness of clinical breast ex-amination as a ‘stand-alone’ screening modality: an overview of systematic reviews,” BMC Cancer, vol. 20, no. 1, p. 1070, Dec. 2020, doi: 10.1186/s12885-020-07521-w.
N. Omar, “Ensemble of Local Texture Descriptor for Accurate Breast Cancer Detection from Histopathologic Images,” J. Commun. Softw. Syst., vol. 19, no. 1, Art. no. 1, Mar. 2023, doi: 10.24138/jcomss-2022-0089.
D. Tsietso, A. Yahya, and R. Samikannu, “A Review on Thermal Imaging-Based Breast Cancer Detection Using Deep Learning,” Mob. Inf. Syst., vol. 2022, no. 1, p. 8952849, 2022, doi: 10.1155/2022/8952849.
X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based medical image segmentation methods,” Sustainability, vol. 13, no. 3, p. 1224, 2021.
M. B. Rakhunde, S. G. Choudhari, and S. Gotarkar, “Thermography as a Breast Cancer Screening Technique: A Review Article.,” Cureus, vol. 14, Nov. 2022, doi: 10.7759/cureus.31251.
“A Review of Breast Thermography.” Accessed: Nov. 08, 2024. [Online]. Available: https://www.iact-org.org/articles/articles-review-btherm.html
P. G. A. Cabral et al., “Remote metastasis detection by video thermometry: A promissing preclinical study,” 2023, Accessed: Sep. 08, 2025. [Online]. Available: https://assets-eu.researchsquare.com/files/rs-3115452/v1/ab291b5c-220f-4ec5-8384-275a1381c624.pdf
M. A. S. Al Husaini, M. H. Habaebi, S. A. Hameed, M. R. Islam, and T. S. Gunawan, “A systematic review of breast cancer detection using thermography and neural networks,” IEEE Access, vol. 8, pp. 208922–208937, 2020.
S. Rodriguez-Guerrero et al., “Dataset of breast thermography images for the detection of benign and malig-nant masses,” Data Brief, vol. 54, p. 110503, Jun. 2024, doi: 10.1016/j.dib.2024.110503.
S. V. Shojaedini and B. Bahramzadeh, “A new method for promoting the detection of breast cancer in thermo-grams: applying deep autoencoders for eliminating redundancies in parallel with preserving independent components,” J. Ambient Intell. Humaniz. Comput., vol. 15, no. 12, Art. no. 12, Dec. 2024, doi: 10.1007/s12652-024-04883-y.
R. Hanieh, S. Elham, and S. B. Mehdi, “Enhancing breast cancer detection in thermographic images using deep hybrid networks,” Imaging Radiat. Res., vol. 6, no. 2, Art. no. 2, Jul. 2024, doi: 10.24294/irr.v6i2.6195.
F. Ahmed, Md. Mijanur Rahman, S. Akter Shukhy, A. Mahmud Sisir, I. Alam Rafi, and R. K. Khan, “Breast Cancer Detection with Vgg16: A Deep Learning Approach with Thermographic Imaging,” 2024. doi: 10.2139/ssrn.4826659.
M. A. S. Al Husaini, M. H. Habaebi, and M. R. Islam, “Real-time thermography for breast cancer detection with deep learning,” Discov. Artif. Intell., vol. 4, no. 1, Art. no. 1, Aug. 2024, doi: 10.1007/s44163-024-00157-w.
A. kadhim Mohammed Jawad Khudhur, “An Improved Of Deep Convolutional Neural Network For Early Breast Cancer Detection,” in 2024 International Congress on Human-Computer Interaction, Optimization and Ro-botic Applications (HORA), May 2024, pp. 1–7. doi: 10.1109/HORA61326.2024.10550830.
H. Dihmani, A. Bousselham, and O. Bouattane, “A New Computer-Aided Diagnosis System for Breast Cancer Detection from Thermograms Using Metaheuristic Algorithms and Explainable AI,” Algorithms, vol. 17, no. 10, Art. no. 10, Oct. 2024, doi: 10.3390/a17100462.
A. F. da Silva, A. C. G. da Silva, R. Azevedo, and W. P. dos Santos, “Detection and classification of breast le-sions in thermographic images by deep transfer learning hybrid architectures,” Res. Biomed. Eng., vol. 40, no. 3, Art. no. 3, Oct. 2024, doi: 10.1007/s42600-024-00359-2.
A. Nigam and D. S. K. Swarnkar, “Breast Cancer Detection using Deep Learning,” 2024.
J. Ahmad et al., “Deep learning empowered breast cancer diagnosis: Advancements in detection and classifi-cation,” PLOS ONE, vol. 19, no. 7, Art. no. 7, Jul. 2024, doi: 10.1371/journal.pone.0304757.
Z. Wang et al., “Deep learning-based multi-modal data integration enhancing breast cancer disease-free sur-vival prediction,” Precis. Clin. Med., vol. 7, no. 2, Art. no. 2, May 2024, doi: 10.1093/pcmedi/pbae012.
D. Tsietso et al., “Multi-Input Deep Learning Approach for Breast Cancer Screening Using Thermal Infrared Imaging and Clinical Data,” IEEE Access, vol. 11, pp. 52101–52116, 2023, doi: 10.1109/ACCESS.2023.3280422.
M. A. S. A. Husaini, M. H. Habaebi, and M. R. Islam, “Utilizing Deep Learning for the Real-Time Detection of Breast Cancer through Thermography,” in 2023 9th International Conference on Computer and Communication Engineering (ICCCE), Aug. 2023, pp. 270–273. doi: 10.1109/ICCCE58854.2023.10246061.
M. M. Ali, F. Maqsood, S. Liu, W. Hou, L. Zhang, and Z. Wang, “Enhancing Breast Cancer Diagnosis with Channel-Wise Attention Mechanisms in Deep Learning,” Comput. Mater. Contin., vol. 77, no. 3, Art. no. 3, 2023, doi: 10.32604/cmc.2023.045310.
S. U. R. Khan, A. Raza, Muhammad Tanveer Meeran, and U. Bilhaj, “Enhancing Breast Cancer Detection through Thermal Imaging and Customized 2D CNN Classifiers,” VFAST Trans. Softw. Eng., vol. 11, no. 4, Art. no. 4, Dec. 2023, doi: 10.21015/vtse.v11i4.1684.
A. Alshehri and D. AlSaeed, “Breast Cancer Diagnosis in Thermography Using Pre-Trained VGG16 with Deep Attention Mechanisms,” Symmetry, vol. 15, no. 3, Art. no. 3, Mar. 2023, doi: 10.3390/sym15030582.
J. C. Torres-Galván, E. Guevara, E. S. Kolosovas-Machuca, A. Oceguera-Villanueva, J. L. Flores, and F. J. Gon-zález, “Deep convolutional neural networks for classifying breast cancer using infrared thermography,” Quant. InfraRed Thermogr. J., vol. 19, no. 4, Art. no. 4, Aug. 2022, doi: 10.1080/17686733.2021.1918514.
Y. Tang, D. Zhou, R. C. C. Flesch, and T. Jin, “A multi-input lightweight convolutional neural network for breast cancer detection considering infrared thermography,” Expert Syst. Appl., vol. 263, p. 125738, Mar. 2025, doi: 10.1016/j.eswa.2024.125738.
O. Attallah, “Harnessing infrared thermography and multi-convolutional neural networks for early breast cancer detection,” Sci. Rep., vol. 15, no. 1, p. 27464, Jul. 2025, doi: 10.1038/s41598-025-09330-2.
A. Y. A. Bani Ahmad, J. A. Alzubi, M. Vasanthan, S. B. Kondaveeti, J. Shreyas, and T. P. Priyanka, “Efficient hybrid heuristic adopted deep learning framework for diagnosing breast cancer using thermography images,” Sci. Rep., vol. 15, no. 1, p. 13605, Apr. 2025, doi: 10.1038/s41598-025-96827-5.
P. Veerlapalli and S. R. Dutta, “A hybrid GAN-based deep learning framework for thermogram-based breast cancer detection,” Sci. Rep., vol. 15, no. 1, p. 19665, Jun. 2025, doi: 10.1038/s41598-025-04676-z.
R. M. Alzahrani et al., “Early breast cancer detection via infrared thermography using a CNN enhanced with particle swarm optimization,” Sci. Rep., vol. 15, no. 1, p. 25290, Jul. 2025, doi: 10.1038/s41598-025-11218-0.
A. Munguía-Siu, I. Vergara, and J. H. Espinoza-Rodríguez, “The Use of Hybrid CNN-RNN Deep Learning Models to Discriminate Tumor Tissue in Dynamic Breast Thermography,” J. Imaging, vol. 10, no. 12, Art. no. 12, Dec. 2024, doi: 10.3390/jimaging10120329.
R. Hanieh, S. Elham, and S. B. Mehdi, “Enhancing breast cancer detection in thermographic images using deep hybrid networks,” Imaging Radiat. Res., vol. 6, no. 2, p. 6195, Jul. 2024, doi: 10.24294/irr.v6i2.6195.
S. V. Shojaedini and B. Bahramzadeh, “A new method for promoting the detection of breast cancer in thermo-grams: applying deep autoencoders for eliminating redundancies in parallel with preserving independent components,” J. Ambient Intell. Humaniz. Comput., vol. 15, no. 12, pp. 4085–4099, Dec. 2024, doi: 10.1007/s12652-024-04883-y.
F. Ahmed, Md. Mijanur Rahman, S. Akter Shukhy, A. Mahmud Sisir, I. Alam Rafi, and R. K. Khan, “Breast Cancer Detection with Vgg16: A Deep Learning Approach with Thermographic Imaging,” 2024. doi: 10.2139/ssrn.4826659.
M. A. S. Al Husaini, M. H. Habaebi, and M. R. Islam, “Real-time thermography for breast cancer detection with deep learning,” Discov. Artif. Intell., vol. 4, no. 1, p. 57, Aug. 2024, doi: 10.1007/s44163-024-00157-w.
A. kadhim Mohammed Jawad Khudhur, “An Improved Of Deep Convolutional Neural Network For Early Breast Cancer Detection,” in 2024 International Congress on Human-Computer Interaction, Optimization and Ro-botic Applications (HORA), May 2024, pp. 1–7. doi: 10.1109/HORA61326.2024.10550830.
H. Dihmani, A. Bousselham, and O. Bouattane, “A New Computer-Aided Diagnosis System for Breast Cancer Detection from Thermograms Using Metaheuristic Algorithms and Explainable AI,” Algorithms, vol. 17, no. 10, Art. no. 10, Oct. 2024, doi: 10.3390/a17100462.
A. F. da Silva, A. C. G. da Silva, R. Azevedo, and W. P. dos Santos, “Detection and classification of breast le-sions in thermographic images by deep transfer learning hybrid architectures,” Res. Biomed. Eng., vol. 40, no. 3, pp. 499–520, Oct. 2024, doi: 10.1007/s42600-024-00359-2.
A. Nigam and D. S. K. Swarnkar, “Breast Cancer Detection using Deep Learning,” 2024.
J. Ahmad et al., “Deep learning empowered breast cancer diagnosis: Advancements in detection and classifi-cation,” PLOS ONE, vol. 19, no. 7, p. e0304757, Jul. 2024, doi: 10.1371/journal.pone.0304757.
Z. Wang et al., “Deep learning-based multi-modal data integration enhancing breast cancer disease-free sur-vival prediction,” Precis. Clin. Med., vol. 7, no. 2, p. pbae012, May 2024, doi: 10.1093/pcmedi/pbae012.
D. Tsietso et al., “Multi-Input Deep Learning Approach for Breast Cancer Screening Using Thermal Infrared Imaging and Clinical Data,” IEEE Access, vol. 11, pp. 52101–52116, 2023, doi: 10.1109/ACCESS.2023.3280422.
M. A. S. A. Husaini, M. H. Habaebi, and M. R. Islam, “Utilizing Deep Learning for the Real-Time Detection of Breast Cancer through Thermography,” in 2023 9th International Conference on Computer and Communication Engineering (ICCCE), Aug. 2023, pp. 270–273. doi: 10.1109/ICCCE58854.2023.10246061.
M. M. Ali, F. Maqsood, S. Liu, W. Hou, L. Zhang, and Z. Wang, “Enhancing Breast Cancer Diagnosis with Channel-Wise Attention Mechanisms in Deep Learning,” Comput. Mater. Contin., vol. 77, no. 3, pp. 2699–2714, 2023, doi: 10.32604/cmc.2023.045310.
S. U. R. Khan, A. Raza, Muhammad Tanveer Meeran, and U. Bilhaj, “Enhancing Breast Cancer Detection through Thermal Imaging and Customized 2D CNN Classifiers,” VFAST Trans. Softw. Eng., vol. 11, no. 4, pp. 80–92, Dec. 2023, doi: 10.21015/vtse.v11i4.1684.
A. Alshehri and D. AlSaeed, “Breast Cancer Diagnosis in Thermography Using Pre-Trained VGG16 with Deep Attention Mechanisms,” Symmetry, vol. 15, no. 3, Art. no. 3, Mar. 2023, doi: 10.3390/sym15030582.
J. C. Torres-Galván, E. Guevara, E. S. Kolosovas-Machuca, A. Oceguera-Villanueva, J. L. Flores, and F. J. Gon-zález, “Deep convolutional neural networks for classifying breast cancer using infrared thermography,” Quant. InfraRed Thermogr. J., vol. 19, no. 4, pp. 283–294, Aug. 2022, doi: 10.1080/17686733.2021.1918514.
M. J. Mammoottil, L. J. Kulangara, A. S. Cherian, P. Mohandas, K. Hasikin, and M. Mahmud, “Detection of Breast Cancer from Five-View Thermal Images Using Convolutional Neural Networks,” J. Healthc. Eng., vol. 2022, pp. 1–15, Feb. 2022, doi: 10.1155/2022/4295221.
E. A. Mohamed, E. A. Rashed, T. Gaber, and O. Karam, “Deep learning model for fully automated breast can-cer detection system from thermograms,” PLOS ONE, vol. 17, no. 1, p. e0262349, Jan. 2022, doi: 10.1371/journal.pone.0262349.
M. Ensafi, M. R. Keyvanpour, and S. V. Shojaedini, “A New method for promote the performance of deep learning paradigm in diagnosing breast cancer: improving role of fusing multiple views of thermography im-ages,” Health Technol., vol. 12, no. 6, pp. 1097–1107, Nov. 2022, doi: 10.1007/s12553-022-00702-6.
S. Dey, R. Roychoudhury, S. Malakar, and R. Sarkar, “Screening of breast cancer from thermogram images by edge detection aided deep transfer learning model,” Multimed. Tools Appl., vol. 81, no. 7, pp. 9331–9349, Mar. 2022, doi: 10.1007/s11042-021-11477-9.
N. Aidossov, A. Mashekova, Y. Zhao, V. Zarikas, E. Ng, and O. Mukhmetov, “Intelligent Diagnosis of Breast Cancer with Thermograms using Convolutional Neural Networks:,” in Proceedings of the 14th International Conference on Agents and Artificial Intelligence, Online Streaming, --- Select a Country ---: SCITEPRESS - Science and Technology Publications, 2022, pp. 598–604. doi: 10.5220/0010920700003116.
A. Alshehri and D. AlSaeed, “Breast Cancer Detection in Thermography Using Convolutional Neural Net-works (CNNs) with Deep Attention Mechanisms,” Appl. Sci., vol. 12, no. 24, p. 12922, Dec. 2022, doi: 10.3390/app122412922.
E. H. Houssein, M. M. Emam, and A. A. Ali, “An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm,” Expert Syst. Appl., vol. 185, p. 115651, Dec. 2021, doi: 10.1016/j.eswa.2021.115651.
H. G. Zadeh, A. Fayazi, B. Binazir, and M. Yargholi, “Breast Cancer Diagnosis Based on Feature Extraction Using Dynamic Models of Thermal Imaging and Deep Autoencoder Neural Networks,” J. Test. Eval., vol. 49, no. 3, pp. 1516–1532, May 2021, doi: 10.1520/JTE20200044.
H. Ucuzal, M. Baykara, and Z. Küçükakçali, “BREAST CANCER DIAGNOSIS BASED ON THERMOGRAPHY IMAGES USING PRE-TRAINED NETWORKS,” J. Cogn. Syst., vol. 6, no. 2, pp. 64–68, Dec. 2021, doi: 10.52876/jcs.990948.
D. Sánchez-Ruiz, I. Olmos-Pineda, and J. A. Olvera-López, “Automatic region of interest segmentation for breast thermogram image classification,” Pattern Recognit. Lett., vol. 135, pp. 72–81, Jul. 2020, doi: 10.1016/j.patrec.2020.03.025.
L. Silva, F. Seixas, C. Fontes, D. Muchaluat-Saade, and A. Conci, “A Computational Method for Breast Ab-normality Detection Using Thermographs,” in 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA: IEEE, Jul. 2020, pp. 469–474. doi: 10.1109/CBMS49503.2020.00095.
S. Ekici and H. Jawzal, “Breast cancer diagnosis using thermography and convolutional neural networks,” Med. Hypotheses, vol. 137, p. 109542, Apr. 2020, doi: 10.1016/j.mehy.2019.109542.
Z. Khomsi, A. Elouerghi, A. Afyf, and L. Bellarbi, “Contribution for the Early Detection of Breast Cancer by a Superficial Thermography Solution,” in 2020 International Conference on Electrical and Information Technologies (ICEIT), Rabat, Morocco: IEEE, Mar. 2020, pp. 1–4. doi: 10.1109/ICEIT48248.2020.9113225.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dasinya Journal for Engineering and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.