An In-Depth Review of Leveraging Deep Learning Advancements for Enhanced Skin Cancer Detection and Classification

Authors

  • Ahwaz Darweesh Hayder Information Technology Management Department, Duhok Polytechnic University
  • Jwan Najeeb Saeed Artificial Intelligence Department, Duhok Polytechnic University https://orcid.org/0000-0001-7829-3139

DOI:

https://doi.org/10.65542/djei.v2i1.26

Keywords:

Deep learning; skin lesions classification; convolutional neural networks; transfer learning; explainable AI.

Abstract

Skin cancer is a prevalent form of cancer caused by the abnormal growth of skin cells, most commonly resulting from exposure to ultraviolet radiation. Early detection is essential for improving clinical outcomes, highlighting the need for advanced and reliable diagnostic approaches. Traditional diagnostic methods often face significant challenges due to high variability arising from the subjective nature of assessments and their reliance on specialists, whose performance is constrained by conventional techniques such as dermoscopy and histopathology. Recent advancements in deep learning have significantly transformed the field of dermatology by enabling automated and reliable skin lesion classification. This study presents an in-depth review of state-of-the-art deep learning techniques, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), transfer learning, and generative adversarial networks (GANs). In addition, the study examines the application of vision transformers (ViTs), which have demonstrated strong capabilities in capturing comprehensive contextual information in skin lesion analysis. Furthermore, this review explores the integration of explainable artificial intelligence (XAI) as well as hybrid and collaborative strategies to enhance model interpretability and reliability. Therefore, this review aims to establish a solid foundation for future research in the automated classification of skin cancer.

References

Tahir, M.; Naeem, A.; Malik, H.; Tanveer, J.; Naqvi, R.A.; Lee, S.W. DSCC_Net: Multi-Classification Deep Learning Models for Diagnosing of Skin Cancer Using Dermoscopic Images. Cancers 2023, 15, doi:10.3390/cancers15072179. DOI: https://doi.org/10.3390/cancers15072179

Bibi, A.; Khan, M.A.; Javed, M.Y.; Tariq, U.; Kang, B.G.; Nam, Y.; Mostafa, R.R.; Sakr, R.H. Skin Lesion Segmentation and Classification Using Conventional and Deep Learning Based Framework. Computers, Materials and Continua 2022, 71, 2477–2495, doi:10.32604/cmc.2022.018917. DOI: https://doi.org/10.32604/cmc.2022.018917

SÖNMEZ, A.F.; ÇAKAR, S.; CEREZCİ, F.; KOTAN, M.; DELİBAŞOĞLU, İ.; ÇİT, G. Deep Learning-Based Classification of Dermoscopic Images for Skin Lesions. Sakarya University Journal of Computer and Information Sciences 2023, 6, 114–122, doi:10.35377/saucis...1314638. DOI: https://doi.org/10.35377/saucis...1314638

Rajendran, V.A.; Shanmugam, S. Automated Skin Cancer Detection and Classification Using Cat Swarm Optimization with a Deep Learning Model. Engineering, Technology & Applied Science Research 2024, 14, 12734–12739, doi:10.48084/etasr.6681. DOI: https://doi.org/10.48084/etasr.6681

Zareen, S.S.; Sun, G.; Kundi, M.; Qadri, S.F.; Qadri, S. Enhancing Skin Cancer Diagnosis with Deep Learning: A Hybrid CNN-RNN Approach. Computers, Materials and Continua 2024, 79, 1497–1519, doi:10.32604/cmc.2024.047418. DOI: https://doi.org/10.32604/cmc.2024.047418

Hassan, B. Explainable AI for Skin Cancer Diagnosis with Deep Learning Abstract. 2024.

Khan, M.A.; Hamza, A.; Shabaz, M.; Kadry, S.; Rubab, S.; Bilal, M.A.; Akbar, M.N.; Kesavan, S.M. Multiclass Skin Lesion Classification Using Deep Learning Networks Optimal Information Fusion. Discover Applied Sciences 2024, 6, doi:10.1007/s42452-024-05998-9. DOI: https://doi.org/10.1007/s42452-024-05998-9

Alipour, N.; Burke, T.; Courtney, J. Skin Type Diversity in Skin Lesion Datasets: A Review. Current Dermatology Reports 2024, 13, 198–210, doi:10.1007/s13671-024-00440-0. DOI: https://doi.org/10.1007/s13671-024-00440-0

He, X.; Wang, Y.; Zhao, S.; Yao, C. Deep Metric Attention Learning for Skin Lesion Classification in Dermoscopy Images. Complex and Intelligent Systems 2022, 8, 1487–1504, doi:10.1007/s40747-021-00587-4. DOI: https://doi.org/10.1007/s40747-021-00587-4

Hasan, S.N. Accurate Deep Learning Algorithms for Skin Lesion Classification. Ingenierie des Systemes d’Information 2024, 29, 1529–1539, doi:10.18280/isi.290426. DOI: https://doi.org/10.18280/isi.290426

Öztürk, Ş.; Özkaya, U. Skin Lesion Segmentation with Improved Convolutional Neural Network. Journal of Digital Imaging 2020, 33, 958–970, doi:10.1007/s10278-020-00343-z. DOI: https://doi.org/10.1007/s10278-020-00343-z

Musthafa, M.M.; T R, M.; V, V.K.; Guluwadi, S. Enhanced Skin Cancer Diagnosis Using Optimized CNN Architecture and Checkpoints for Automated Dermatological Lesion Classification. BMC Medical Imaging 2024, 24, 1–21, doi:10.1186/s12880-024-01356-8. DOI: https://doi.org/10.1186/s12880-024-01356-8

Ben Yahia, K.; Saadaoui, E. Morphological Variability of the Acorns of Three Species of Oaks from North-West Tunisia. 2023.

Sikandar, S.; Mahum, R.; Ragab, A.E.; Yayilgan, S.Y.; Shaikh, S. SCDet: A Robust Approach for the Detection of Skin Lesions. Diagnostics 2023, 13, doi:10.3390/diagnostics13111824.

Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P.; Gutman, D.; et al. A Patient-Centric Dataset of Images and Metadata for Identifying Melanomas Using Clinical Context. Scientific Data 2021, 8, 1–9, doi:10.1038/s41597-021-00815-z. DOI: https://doi.org/10.1038/s41597-021-00815-z

Sarwar, N.; Irshad, A.; Naith, Q.H.; D Alsufiani, K.; Almalki, F.A. Skin Lesion Segmentation Using Deep Learning Algorithm with Ant Colony Optimization. BMC medical informatics and decision making 2024, 24, 265, doi:10.1186/s12911-024-02686-x. DOI: https://doi.org/10.1186/s12911-024-02686-x

Sikandar, S.; Mahum, R.; Ragab, A.E.; Yayilgan, S.Y.; Shaikh, S. SCDet: A Robust Approach for the Detection of Skin Lesions. Diagnostics 2023, 13, doi:10.3390/diagnostics13111824. DOI: https://doi.org/10.3390/diagnostics13111824

Ali, Z.; Naz, S.; Zaffar, H.; Choi, J.; Kim, Y. An IoMT-Based Melanoma Lesion Segmentation Using Conditional Generative Adversarial Networks. Sensors 2023, 23, doi:10.3390/s23073548. DOI: https://doi.org/10.3390/s23073548

Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Skin Melanoma Classification Using ROI and Data Augmentation with Deep Convolutional Neural Networks. Multimedia Tools and Applications 2020, 79, 24029–24055, doi:10.1007/s11042-020-09067-2. DOI: https://doi.org/10.1007/s11042-020-09067-2

Dihan, F.J.; Murad, S.A.; Jafar, A.; Muzahid, M.; Aslam Uddin, K.M.; Alenazi, M.J.F.; Kumar Bairagi, A.; Biswas, S. MpoxSLDNet: A Novel CNN Model for Detecting Monkeypox Lesions and Performance Comparison with Pre-Trained Models. 2024, 1–13.

Yang, G.; Luo, S.; Greer, P. Advancements in Skin Cancer Classification: A Review of Machine Learning Techniques in Clinical Image Analysis. Multimedia Tools and Applications 2024, doi:10.1007/s11042-024-19298-2. DOI: https://doi.org/10.1007/s11042-024-19298-2

Samrin, S.; Nadaf, S.; Matthew-ibhafidon, D.O.; Srivastava, N. Understanding Skin Cancer: A Review. International Research Journal of Modernization in Engineering Technology and Science 2024, doi:10.56726/irjmets60147. DOI: https://doi.org/10.56726/IRJMETS60147

Hsu, S.T.; Su, Y.J.; Hung, C.H.; Chen, M.J.; Lu, C.H.; Kuo, C.E. Automatic Ovarian Tumors Recognition System Based on Ensemble Convolutional Neural Network with Ultrasound Imaging. BMC Medical Informatics and Decision Making 2022, 22, 1–13, doi:10.1186/s12911-022-02047-6. DOI: https://doi.org/10.1186/s12911-022-02047-6

Azeem, M.; Kiani, K.; Mansouri, T.; Topping, N. SkinLesNet: Classification of Skin Lesions and Detection of Melanoma Cancer Using a Novel Multi-Layer Deep Convolutional Neural Network. Cancers 2024, 16, 1–15, doi:10.3390/cancers16010108. DOI: https://doi.org/10.3390/cancers16010108

Chunhapran, O.; Maliyeam, M.; Quirchmayr, G. Monkeypox Lesion and Rash Stage Classification Using Deep Learning Technique. Lecture Notes in Networks and Systems 2024, 973 LNNS, 141–149, doi:10.1007/978-3-031-58561-6_14. DOI: https://doi.org/10.1007/978-3-031-58561-6_14

Hoang, L.; Lee, S.H.; Lee, E.J.; Kwon, K.R. Multiclass Skin Lesion Classification Using a Novel Lightweight Deep Learning Framework for Smart Healthcare. Applied Sciences (Switzerland) 2022, 12, doi:10.3390/app12052677. DOI: https://doi.org/10.3390/app12052677

Chen, S. Exploring the Application of Machine Learning for Skin Cancer Image Identification. 2024, 11, doi:10.54254/2977-3903/11/2024108. DOI: https://doi.org/10.54254/2977-3903/11/2024108

Khudzari, Z.M. Biomedical System Design. 2024.

Abedini, M. Skin Cancer Classification by Leveraging Segment Anything Model for Semantic Segmentation of Skin Lesion. Ijarcce 2024, 13, doi:10.17148/ijarcce.2024.13835. DOI: https://doi.org/10.17148/IJARCCE.2024.13835

Al-Rakhami, M.S.; AlQahtani, S.A.; Alawwad, A. Effective Skin Cancer Diagnosis Through Federated Learning and Deep Convolutional Neural Networks. Applied Artificial Intelligence 2024, 38, 1–27, doi:10.1080/08839514.2024.2364145. DOI: https://doi.org/10.1080/08839514.2024.2364145

Vidyapeetham, A.V. Unveiling Dermatological Threats : Deep Learning-Based Skin Cancer Classification from Lesion Images. 2024, doi:10.6084/m9.doione.IJNRD2403634.

Mir, A.N.; Nissar, I.; Rizvi, D.R.; Kumar, A. LesNet: An Automated Skin Lesion Deep Convolutional Neural Network Classifier through Augmentation and Transfer Learning. Procedia Computer Science 2024, 235, 112–121, doi:10.1016/j.procs.2024.04.014. DOI: https://doi.org/10.1016/j.procs.2024.04.014

ORNEK, H.K.; YILMAZ, B.; YASIN, E.; KOKLU, M. Deep Learning-Based Classification of Skin Lesion Dermoscopic Images for Melanoma Diagnosis. Intelligent Methods in Engineering Sciences 2024, doi:10.58190/imiens.2024.101. DOI: https://doi.org/10.58190/imiens.2024.101

Vasanthakumari, P.; Romano, R.A.; Rosa, R.G.T.; Salvio, A.G.; Yakovlev, V.; Kurachi, C.; Hirshburg, J.M.; Jo, J.A. Pixel-Level Classification of Pigmented Skin Cancer Lesions Using Multispectral Autofluorescence Lifetime Dermoscopy Imaging. Biomedical Optics Express 2024, 15, 4557, doi:10.1364/boe.523831. DOI: https://doi.org/10.1364/BOE.523831

Zhang, L.; Xiao, X.; Wen, J.; Li, H. MDKLoss: Medicine Domain Knowledge Loss for Skin Lesion Recognition. Mathematical Biosciences and Engineering 2024, 21, 2671–2690, doi:10.3934/mbe.2024118. DOI: https://doi.org/10.3934/mbe.2024118

Hameed, M.; Zameer, A.; Zahoor Raja, M.A. A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset. CMES - Computer Modeling in Engineering and Sciences 2024, 140, 2131–2164, doi:10.32604/cmes.2024.050124. DOI: https://doi.org/10.32604/cmes.2024.050124

Wortsman, X. Ultrasound in Skin Cancer: Why, How, and When to Use It? Cancers 2024, 16, doi:10.3390/cancers16193301. DOI: https://doi.org/10.3390/cancers16193301

Ayana, G.; Dese, K.; Abagaro, A.M.; Jeong, K.C.; Yoon, S. Do; Choe, S.W. Multistage Transfer Learning for Medical Images; Springer Netherlands, 2024; Vol. 57; ISBN 0123456789. DOI: https://doi.org/10.1007/s10462-024-10855-7

Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.Y.; Maqsood, M. Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection. IEEE Access 2020, 8, 147858–147871, doi:10.1109/ACCESS.2020.3014701. DOI: https://doi.org/10.1109/ACCESS.2020.3014701

Profile, S.E.E. Classification of Skin Diseases with Different Deep Learning Models and Comparison of the Performances of the Models Classification of Skin Diseases with Different Deep Learning Models and Comparison of the Performances of the Models Farklı Derin Öğrenme . 2024, doi:10.46810/tdfd.1502471. DOI: https://doi.org/10.46810/tdfd.1502471

Chatterjee, S.; Gil, J.M.; Byun, Y.C. Early Detection of Multiclass Skin Lesions Using Transfer Learning-Based IncepX-Ensemble Model. IEEE Access 2024, 12, 113677–113693, doi:10.1109/ACCESS.2024.3432904. DOI: https://doi.org/10.1109/ACCESS.2024.3432904

Primiero, C.A.; Betz-Stablein, B.; Ascott, N.; D’Alessandro, B.; Gaborit, S.; Fricker, P.; Goldsteen, A.; González-Villà, S.; Lee, K.; Nazari, S.; et al. A Protocol for Annotation of Total Body Photography for Machine Learning to Analyze Skin Phenotype and Lesion Classification. Frontiers in Medicine 2024, 11, 1–14, doi:10.3389/fmed.2024.1380984. DOI: https://doi.org/10.3389/fmed.2024.1380984

Ramamurthy, K.; Thayumanaswamy, I.; Radhakrishnan, M.; Won, D.; Lingaswamy, S. Integration of Localized, Contextual, and Hierarchical Features in Deep Learning for Improved Skin Lesion Classification. Diagnostics 2024, 14, doi:10.3390/diagnostics14131338. DOI: https://doi.org/10.3390/diagnostics14131338

Harahap, M.; Husein, A.M.; Kwok, S.C.; Wizley, V.; Leonardi, J.; Ong, D.K.; Ginting, D.; Silitonga, B.A. Skin Cancer Classification Using EfficientNet Architecture. Bulletin of Electrical Engineering and Informatics 2024, 13, 2716–2728, doi:10.11591/eei.v13i4.7159. DOI: https://doi.org/10.11591/eei.v13i4.7159

Ali, M.U.; Khalid, M.; Alshanbari, H.; Zafar, A.; Lee, S.W. Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework. Bioengineering 2023, 10, 1–16, doi:10.3390/bioengineering10121430. DOI: https://doi.org/10.3390/bioengineering10121430

Khan, A.H.; Awang Iskandar, D.N.F.; Al-Asad, J.F.; Mewada, H.; Sherazi, M.A. Ensemble Learning of Deep Learning and Traditional Machine Learning Approaches for Skin Lesion Segmentation and Classification. Concurrency and Computation: Practice and Experience 2022, 34, doi:10.1002/cpe.6907. DOI: https://doi.org/10.1002/cpe.6907

Akram, A.; Rashid, J.; Jaffar, M.A.; Faheem, M.; Amin, R. ul Segmentation and Classification of Skin Lesions Using Hybrid Deep Learning Method in the Internet of Medical Things. Skin Research and Technology 2023, 29, doi:10.1111/srt.13524. DOI: https://doi.org/10.1111/srt.13524

Deng, X.; Yin, Q.; Guo, P. Efficient Structural Pseudoinverse Learning-Based Hierarchical Representation Learning for Skin Lesion Classification. Complex and Intelligent Systems 2022, 8, 1445–1457, doi:10.1007/s40747-021-00588-3. DOI: https://doi.org/10.1007/s40747-021-00588-3

Hussain, M.; Khan, M.A.; Damaševičius, R.; Alasiry, A.; Marzougui, M.; Alhaisoni, M.; Masood, A. SkinNet-INIO: Multiclass Skin Lesion Localization and Classification Using Fusion-Assisted Deep Neural Networks and Improved Nature-Inspired Optimization Algorithm. Diagnostics 2023, 13, doi:10.3390/diagnostics13182869. DOI: https://doi.org/10.3390/diagnostics13182869

Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial Intelligence-Based Image Classification Methods for Diagnosis of Skin Cancer: Challenges and Opportunities. Computers in Biology and Medicine 2020, 127, 104065, doi:10.1016/j.compbiomed.2020.104065. DOI: https://doi.org/10.1016/j.compbiomed.2020.104065

Zola, F.; Segurola-Gil, L.; Bruse, J.L.; Galar, M.; Orduna-Urrutia, R. Attacking Bitcoin Anonymity: Generative Adversarial Networks for Improving Bitcoin Entity Classification. Applied Intelligence 2022, 52, 17289–17314, doi:10.1007/s10489-022-03378-7. DOI: https://doi.org/10.1007/s10489-022-03378-7

Navidan, H.; Moshiri, P.F.; Nabati, M.; Shahbazian, R.; Ghorashi, S.A.; Shah-Mansouri, V.; Windridge, D. Generative Adversarial Networks (GANs) in Networking: A Comprehensive Survey & Evaluation. Computer Networks 2021, 194, doi:10.1016/j.comnet.2021.108149. DOI: https://doi.org/10.1016/j.comnet.2021.108149

Mutepfe, F.; Kalejahi, B.K.; Meshgini, S.; Danishvar, S. Generative Adversarial Network Image Synthesis Method for Skin Lesion Generation and Classification. Journal of Medical Signals and Sensors 2021, 11, 237–252, doi:10.4103/jmss.JMSS_53_20. DOI: https://doi.org/10.4103/jmss.JMSS_53_20

Ben Yahia, K.; Saadaoui, E. Morphological Variability of the Acorns of Three Species of Oaks from North-West Tunisia. 2023.

Su, Q.; Hamed, H.N.A.; Isa, M.A.; Hao, X.; Dai, X. A GAN-Based Data Augmentation Method for Imbalanced Multi-Class Skin Lesion Classification. IEEE Access 2024, 12, 16498–16513, doi:10.1109/ACCESS.2024.3360215. DOI: https://doi.org/10.1109/ACCESS.2024.3360215

Nyemeesha, V. SCDC-Net: Skin Cancer Detection and Classification Using Deep Q Neural Network with Hybrid Features. International Journal on Recent and Innovation Trends in Computing and Communication 2022, 10, 70–84, doi:10.17762/ijritcc.v10i7.5573. DOI: https://doi.org/10.17762/ijritcc.v10i7.5573

Meedeniya, D.; De Silva, S.; Gamage, L.; Isuranga, U. Skin Cancer Identification Utilizing Deep Learning: A Survey. IET Image Processing 2024, 1–19, doi:10.1049/ipr2.13219. DOI: https://doi.org/10.1049/ipr2.13219

Debelee, T.G. Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review. Diagnostics 2023, 13, doi:10.3390/diagnostics13193147. DOI: https://doi.org/10.3390/diagnostics13193147

Himel, G.M.S.; Islam, M.M.; Al-Aff, K.A.; Karim, S.I.; Sikder, M.K.U. Skin Cancer Segmentation and Classification Using Vision Transformer for Automatic Analysis in Dermatoscopy-Based Noninvasive Digital System. International Journal of Biomedical Imaging 2024, 2024, doi:10.1155/2024/3022192. DOI: https://doi.org/10.1155/2024/3022192

Rani, A.; Khalil, A.; Shah, Y.A.; Jr, I. Deep Learning-Based Skin Lesion Segmentation and Classification. 2024.

Shafiq, M.; Aggarwal, K.; Jayachandran, J.; Srinivasan, G.; Boddu, R.; Alemayehu, A. A Novel Skin Lesion Prediction and Classification Technique: ViT-GradCAM. Skin Research and Technology 2024, 30, 1–12, doi:10.1111/srt.70040. DOI: https://doi.org/10.1111/srt.70040

Gallazzi, M.; Biavaschi, S.; Bulgheroni, A.; Gatti, T.M.; Corchs, S.; Gallo, I. A Large Dataset to Enhance Skin Cancer Classification With Transformer-Based Deep Neural Networks. IEEE Access 2024, 12, 109544–109559, doi:10.1109/ACCESS.2024.3439365. DOI: https://doi.org/10.1109/ACCESS.2024.3439365

Remya, S.; Anjali, T.; Sugumaran, V. A Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis. IEEE Access 2024, 12, 50738–50754, doi:10.1109/ACCESS.2024.3385340. DOI: https://doi.org/10.1109/ACCESS.2024.3385340

Son, H.M.; Jeon, W.; Kim, J.; Heo, C.Y.; Yoon, H.J.; Park, J.U.; Chung, T.M. AI-Based Localization and Classification of Skin Disease with Erythema. Scientific Reports 2021, 11, 1–15, doi:10.1038/s41598-021-84593-z.

Mridha, K.; Uddin, M.M.; Shin, J.; Khadka, S.; Mridha, M.F. An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System. IEEE Access 2023, 11, 41003–41018, doi:10.1109/ACCESS.2023.3269694. DOI: https://doi.org/10.1109/ACCESS.2023.3269694

Giavina-Bianchi, M.; Vitor, W.G.; Fornasiero de Paiva, V.; Okita, A.L.; Sousa, R.M.; Machado, B. Explainability Agreement between Dermatologists and Five Visual Explanations Techniques in Deep Neural Networks for Melanoma AI Classification. Frontiers in Medicine 2023, 10, doi:10.3389/fmed.2023.1241484. DOI: https://doi.org/10.3389/fmed.2023.1241484

Azlaan, H.; Oluwaseyi, J. Explainable AI (XAI) for Skin Cancer Detection. 2024.

Kassem, M.A.; Hosny, K.M.; Damaševičius, R.; Eltoukhy, M.M. Machine Learning and Deep Learning Methods for Skin Lesion Classification and Diagnosis: A Systematic Review. Diagnostics 2021, 11, 1–29, doi:10.3390/diagnostics11081390. DOI: https://doi.org/10.3390/diagnostics11081390

Idroes, G.M.; Noviandy, T.R.; Emran, T. Bin; Idroes, R. Explainable Deep Learning Approach for Mpox Skin Lesion Detection with Explainable Deep Learning Approach for Mpox Skin Lesion Detection with Grad-CAM. 2024, doi:10.60084/hjas.v2i2.216. DOI: https://doi.org/10.60084/hjas.v2i2.216

Natha, P.; RajaRajeswari, P. Advancing Skin Cancer Prediction Using Ensemble Models. Computers 2024, 13, doi:10.3390/computers13070157. DOI: https://doi.org/10.3390/computers13070157

Son, H.M.; Jeon, W.; Kim, J.; Heo, C.Y.; Yoon, H.J.; Park, J.U.; Chung, T.M. AI-Based Localization and Classification of Skin Disease with Erythema. Scientific Reports 2021, 11, 1–14, doi:10.1038/s41598-021-84593-z. DOI: https://doi.org/10.1038/s41598-021-84593-z

Behara, K.; Bhero, E.; Agee, J.T. An Improved Skin Lesion Classification Using a Hybrid Approach with Active Contour Snake Model and Lightweight Attention-Guided Capsule Networks. Diagnostics 2024, 14, doi:10.3390/diagnostics14060636. DOI: https://doi.org/10.20944/preprints202401.2170.v1

Hassan, B. Ensemble Learning for Multi-Class Skin Cancer Detection. 2024.

Gamil, S.; Zeng, F.; Alrifaey, M.; Asim, M.; Ahmad, N. An Efficient AdaBoost Algorithm for Enhancing Skin Cancer Detection and Classification. Algorithms 2024, 17, doi:10.3390/a17080353. DOI: https://doi.org/10.3390/a17080353

Thwin, S.M. Applied Sciences. Early Writings on India 2018, 124–134, doi:10.4324/9781315232140-14. DOI: https://doi.org/10.4324/9781315232140-14

Wang, Z.; Wang, C.; Peng, L.; Lin, K.; Xue, Y.; Chen, X.; Bao, L.; Liu, C.; Zhang, J.; Xie, Y. Radiomic and Deep Learning Analysis of Dermoscopic Images for Skin Lesion Pattern Decoding. Scientific Reports 2024, 14, 1–14, doi:10.1038/s41598-024-70231-x. DOI: https://doi.org/10.1038/s41598-024-70231-x

Downloads

Published

2026-01-16

How to Cite

Darweesh Hayder, A., & Najeeb Saeed, J. (2026). An In-Depth Review of Leveraging Deep Learning Advancements for Enhanced Skin Cancer Detection and Classification. Dasinya Journal for Engineering and Informatics, 2(1). https://doi.org/10.65542/djei.v2i1.26

Issue

Section

Articles