Deep Learning-Based Skin Disease Detection and Classification: A Systematic Literature Review
DOI:
https://doi.org/10.65542/djei.v2i1.19Keywords:
Deep Learning, Convolutional Neural Networks (CNN), Transfer Learning, Image Processing, Skin Lesions, Image Classification, Dermatoscopic ImageAbstract
Recent advances in deep learning have significantly transformed medical diagnostics, particularly in dermatology. Accurate skin disease detection and classification areessential for effective treatment and improved patient outcomes. This systematic review examines deep learning approaches, including Convolutional Neural Networks (CNNs) and transfer learning, for automated dermatological diagnosis. Public datasets such as HAM10000 and ISIC play a key role in training robust models; however, challenges including dataset imbalance, disease heterogeneity, and overfitting remain. Techniques such as ensemble learning, attention mechanisms, explainable artificial intelligence, data augmentation, hybrid models, and task-specific loss functions have been shown to enhance accuracy, robustness, and interpretability. This study follows a systematic review methodology in accordance with the PRISMA guidelines. The review synthesizes 17 studies published between 2021 and 2024, highlighting the potential of deep learning to support scalable and reliable dermatological diagnostic systems.
References
S. Mushtaq and O. Singh, “A deep learning based architecture for multi-class skin cancer classification,” Multimed. Tools Appl., no. 0123456789, 2024, doi: 10.1007/s11042-024-19817-1.
A. Naeem, T. Anees, M. Fiza, R. A. Naqvi, and S. W. Lee, “SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images,” Sensors, vol. 22, no. 15, 2022, doi: 10.3390/s22155652.
A. Almutairi and R. U. Khan, “Image-Based Classical Features and Machine Learning Analysis of Skin Cancer Instances,” Appl. Sci., vol. 13, no. 13, 2023, doi: 10.3390/app13137712.
S. Remya, T. Anjali, and V. Sugumaran, “A Novel Transfer Learning Framework for Multimodal Skin Lesion Analysis,” IEEE Access, vol. 12, no. April, pp. 50738–50754, 2024, doi: 10.1109/ACCESS.2024.3385340.
A. Pennisi, D. D. Bloisi, V. Suriani, D. Nardi, A. Facchiano, and A. R. Giampetruzzi, “Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices,” J. Digit. Imaging, vol. 35, no. 5, pp. 1217–1230, 2022, doi: 10.1007/s10278-022-00634-7.
A. Balasundaram, A. Shaik, B. R. Alroy, A. Singh, and S. J. Shivaprakash, “Genetic Algorithm Optimized Stacking Approach to Skin Disease Detection,” IEEE Access, vol. 12, no. July, pp. 88950–88962, 2024, doi: 10.1109/ACCESS.2024.3412791.
D. K. A. Al-Saedi and S. Savaş, “Skin lesion classification by weighted ensemble deep learning,” Iran J. Comput. Sci., vol. 7, no. 4, pp. 785–800, 2024, doi: 10.1007/s42044-024-00210-y.
Z. Ji, X. Wang, C. Liu, Z. Wang, N. Yuan, and I. Ganchev, “EFAM-Net: A Multi-Class Skin Lesion Classification Model Utilizing Enhanced Feature Fusion and Attention Mechanisms,” IEEE Access, no. July, pp. 143029–143041, 2024, doi: 10.1109/ACCESS.2024.3468612.
N. Darapaneni et al., “Early Detection of Skin Cancer - Solution for Identifying and Defining Skin Cancers using AI,” in 2022 Interdisciplinary Research in Technology and Management (IRTM), 2022, pp. 1–6. doi: 10.1109/IRTM54583.2022.9791676.
T. M. Alam et al., “An Efficient Deep Learning-Based Skin Cancer Classifier for an Imbalanced Dataset,” Diagnostics, vol. 12, no. 9, 2022, doi: 10.3390/diagnostics12092115.
R. Mittal, F. Jeribi, R. J. Martin, V. Malik, S. J. Menachery, and J. Singh, “DermCDSM: Clinical Decision Support Model for Dermatosis Using Systematic Approaches of Machine Learning and Deep Learning,” IEEE Access, vol. 12, no. April, pp. 47319–47337, 2024, doi: 10.1109/ACCESS.2024.3373539.
S. S. Noronha, M. A. Mehta, D. Garg, K. Kotecha, and A. Abraham, “Deep Learning-Based Dermatological Condition Detection: A Systematic Review With Recent Methods, Datasets, Challenges, and Future Directions,” IEEE Access, vol. 11, no. October, pp. 140348–140381, 2023, doi: 10.1109/ACCESS.2023.3339635.
A. J. Stratigos et al., “The prevalence of skin diseases in Greece, impact on quality of life and stigmatization: A population-based survey study,” JEADV Clin. Pract., vol. 3, no. 2, pp. 591–599, 2024, doi: 10.1002/jvc2.287.
M. Hammad, P. Pławiak, M. Elaffendi, A. A. A. El-latif, and A. A. A. Latif, “Psoriasis Skin Detection,” 2023.
Z. Jiang, X. Gu, D. Chen, M. Zhang, and C. Xu, “Deep learning-assisted multispectral imaging for early screening of skin diseases,” Photodiagnosis Photodyn. Ther., vol. 48, no. May, p. 104292, 2024, doi: 10.1016/j.pdpdt.2024.104292.
A. Ayaz, R. Boonstoppel, C. Lorenz, J. Weese, J. Pluim, and M. Breeuwer, “Effective deep-learning brain MRI super resolution using simulated training data,” Comput. Biol. Med., vol. 183, no. October, p. 109301, 2024, doi: 10.1016/j.compbiomed.2024.109301.
Z. Rebar and A. Mohsin Abdulazeez, “Deep and Machine Learning Algorithms for Diagnosing Brain Cancer and Tumors,” Indones. J. Comput. Sci., vol. 13, no. 3, 2024, doi: 10.33022/ijcs.v13i3.4028.
N. M. Farhan and B. Setiaji, “Indonesian Journal of Computer Science,” Indones. J. Comput. Sci., vol. 12, no. 2, pp. 284–301, 2023, [Online]. Available: http://ijcs.stmikindonesia.ac.id/ijcs/index.php/ijcs/article/view/3135
M. K. V. S. Mounica, “GAN Based Multi-Class Skin Disease Classification: Deep Learning Approach,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 12, no. 5, pp. 137–142, 2024, doi: 10.22214/ijraset.2024.61366.
K. Paramanandam and R. Kanagavalli, “A Review on Deep Learning Techniques for Saliency Detection,” Lect. Notes Networks Syst., vol. 400, no. Mm, pp. 279–289, 2023, doi: 10.1007/978-981-19-0095-2_29.
A. T. Ibrahim, M. Abdullahi, A. Florentin, D. Kana, M. T. Mohammed, and I. H. Hassan, “Jo ur na l P re r f,” Data Sci. Manag., 2024, doi: 10.1016/j.dsm.2024.10.002.
S. Ibrahim, K. Amin, R. I. Alkanhel, H. A. Abdallah, and M. Ibrahim, “Soft Attention based Efficientnetv2b3 Model for Skin Cancer’s Disease Classification using Dermoscopy Images,” IEEE Access, vol. 12, no. October, pp. 161283–161295, 2024, doi: 10.1109/ACCESS.2024.3486153.
F. Grignaffini et al., “Machine Learning Approaches for Skin Cancer Classification from Dermoscopic Images: A Systematic Review,” Algorithms, vol. 15, no. 11, pp. 1–30, 2022, doi: 10.3390/a15110438.
T. G. Debelee, “Skin Lesion Classification and Detection Using Machine Learning Techniques: A Systematic Review,” Diagnostics, vol. 13, no. 19, 2023, doi: 10.3390/diagnostics13193147.
Nirupama and Virupakshappa, “MobileNet-V2: An Enhanced Skin Disease Classification by Attention and Multi-Scale Features,” J. Imaging Informatics Med., 2024, doi: 10.1007/s10278-024-01271-y.
Z. R. Abdulqader, D. M. Abdulqader, O. M. Ahmed, H. R. Ismael, S. H. Ahmed, and L. Haji, “Responsible AI Development for Sustainable Enterprises: A Review of Integrating Ethical AI with IoT and Enterprise Systems,” J. Inf. Technol. Informatics, vol. 3, no. 2, pp. 129–156, 2024.
M. A. Rasel, S. Abdul Kareem, Z. Kwan, S. S. Yong, and U. Obaidellah, “Bluish veil detection and lesion classification using custom deep learnable layers with explainable artificial intelligence (XAI),” Comput. Biol. Med., vol. 178, p. 108758, 2024, doi: https://doi.org/10.1016/j.compbiomed.2024.108758.
V. Tulsani, P. Sahatiya, J. Parmar, and J. Parmar, “XAI Applications in Medical Imaging: A Survey of Methods and Challenges,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 9, pp. 181–186, 2023, doi: 10.17762/ijritcc.v11i9.8332.
Z. Hu, W. Mei, H. Chen, and W. Hou, “Multi-scale feature fusion and class weight loss for skin lesion classification,” Comput. Biol. Med., vol. 176, no. May, p. 108594, 2024, doi: 10.1016/j.compbiomed.2024.108594.
R. Karthik, R. Menaka, S. Atre, J. Cho, and S. V. Easwaramoorthy, “A Hybrid Deep Learning Approach for Skin Cancer Classification using Swin Transformer and Dense Group Shuffle Non-Local Attention Network,” IEEE Access, vol. 12, no. November, pp. 158040–158051, 2024, doi: 10.1109/ACCESS.2024.3485507.
P. N. Srinivasu, J. G. Sivasai, M. F. Ijaz, A. K. Bhoi, W. Kim, and J. J. Kang, “Networks with MobileNet V2 and LSTM,” pp. 1–27, 2021.
G. Singh, K. Guleria, and S. Sharma, “A Transfer Learning-based Pre-trained VGG16 Model for Skin Disease Classification,” 2023 IEEE 3rd Mysore Sub Sect. Int. Conf. MysuruCon 2023, pp. 1–6, 2023, doi: 10.1109/MysuruCon59703.2023.10396942.
V. Anand, S. Gupta, S. R. Nayak, D. Koundal, D. Prakash, and K. D. Verma, “An automated deep learning models for classification of skin disease using Dermoscopy images: a comprehensive study,” Multimed. Tools Appl., vol. 81, no. 26, pp. 37379–37401, 2022, doi: 10.1007/s11042-021-11628-y.
M. Bhargavi, R. Renugadevi, S. Sivabalan, P. Phani, J. Ganesh, and K. Bhanu, “Ensemble Learning for Skin Lesion Classification: A Robust Approach for Improved Diagnostic Accuracy (ELSLC),” 3rd Int. Conf. Innov. Mech. Ind. Appl. ICIMIA 2023 - Proc., no. December 2023, pp. 390–395, 2023, doi: 10.1109/ICIMIA60377.2023.10425888.
S. Rangaswamy, S. S. Tantry, and T. S. Lal, “Skin Disease Classification Using Deep Learning,” no. November, 2024, doi: 10.1007/s40009-024-01523-z.
S. Jain, U. Singhania, B. Tripathy, E. A. Nasr, and M. K. Aboudaif, “Deep Learning-Based Transfer Learning for Classification of Skin Cancer,” Sensors, vol. 21, no. 8142, p. 16, 2021, doi: https://doi.org/10.3390/s21238142.
S. Inthiyaz et al., “Skin disease detection using deep learning,” Adv. Eng. Softw., vol. 175, no. September 2022, p. 103361, 2023, doi: 10.1016/j.advengsoft.2022.103361.
S. Zhi, Z. Li, X. Yang, K. Sun, and J. Wang, “A Multiclassification Model for Skin Diseases Using Dermatoscopy Images with Inception-v2,” 2024.
K. M. Hosny, W. Said, M. Elmezain, and M. A. Kassem, “Explainable deep inherent learning for multi-classes skin lesion classification,” Appl. Soft Comput., vol. 159, no. November 2023, p. 111624, 2024, doi: 10.1016/j.asoc.2024.111624.
M. A. Arshed, S. Mumtaz, M. Ibrahim, S. Ahmed, M. Tahir, and M. Shafi, “Multi-Class Skin Cancer Classification Using Vision Transformer Networks and Convolutional Neural Network-Based Pre-Trained Models,” Inf., vol. 14, no. 7, 2023, doi: 10.3390/info14070415.
C. Kavitha, S. Priyanka, M. P. Kumar, and V. Kusuma, “Skin Cancer Detection and Classification using Deep Learning Techniques,” Procedia Comput. Sci., vol. 235, no. 2023, pp. 2793–2802, 2024, doi: 10.1016/j.procs.2024.04.264.
H. L. Gururaj, N. Manju, A. Nagarjun, V. N. Manjunath Aradhya, and F. Flammini, “DeepSkin: A Deep Learning Approach for Skin Cancer Classification,” IEEE Access, vol. 11, no. April, pp. 50205–50214, 2023, doi: 10.1109/ACCESS.2023.3274848.
A. Pandey, M. S. Teja, P. Sahare, V. Kamble, and M. Parate, “Skin cancer classification using non ‑ local means denoising and sparse dictionary learning based CNN,” J. Electr. Syst. Inf. Technol., 2024, doi: 10.1186/s43067-024-00162-0.
A. Kumar, A. Vishwakarma, V. Bajaj, and S. Mishra, “Novel Mixed Domain Hand-Crafted Features for Skin Disease Recognition Using Multiheaded CNN,” IEEE Trans. Instrum. Meas., vol. 73, pp. 1–13, 2024, doi: 10.1109/TIM.2024.3370772.
R. S. A, V. Chamola, Z. Hussain, F. Albalwy, and A. Hussain, “A novel end-to-end deep convolutional neural network based skin lesion classification framework,” Expert Syst. Appl., vol. 246, no. June 2023, p. 123056, 2024, doi: 10.1016/j.eswa.2023.123056.
P. Tschandl, C. Rosendahl, and H. Kittler, “Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Sci. Data, vol. 5, pp. 1–10, 2018, doi: 10.1038/sdata.2018.161.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Dasinya Journal for Engineering and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dasinya Journal for Engineering and Informatics is licensed under a