Iris Recognition Based Deep Learning: A Survey

Authors

  • Haval Ismael Hussein Computer Science Department, University of Zakho https://orcid.org/0000-0001-8868-1792
  • Wafaa Mustafa Abduallah Cybersecurity Engineering Department, Duhok Polytechnic University
  • Herman Khalid Omer Information Technology Department, Duhok Polytechnic University https://orcid.org/0000-0003-0834-5524

DOI:

https://doi.org/10.65542/djei.v2i1.17

Keywords:

Iris Recognition, Deep Learning, Convolutional Neural Network, Transfer Learning, Biometrics

Abstract

The iris recognition system is one of the most reliable biometric authentication systems owing to its individuality and permanence. With the introduction of deep learning concepts, especially CNNs, iris recognition models have improved tremendously in accuracy, robustness, and efficiency. We present an extensive survey summ2arizing the application of deep learning in iris recognition; covering datasets, feature extraction, architectures, and evaluation metrics. We conclude that while CNNs and transfer learning produce the best accuracy on well-constrained datasets, serious challenges lie with cross-sensor generalization and robustness under mobile or unconstrained environments. The new solutions that are generating attention, such as generation adversarial network-based augmentation and attention-driven architectures, are solution pathways to surmount data scarcity and further strengthen the adaptation capability. This survey is aimed at steering researchers and practitioners to various critical challenges and directions that have the most potential for future iris recognition systems.

References

Dargan, S., & Kumar, M. (2020). A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Systems with Applications, 143, 113114. https://doi. org/10. 1016/j. eswa. 2019. 113114

Winston, J. J., & Hemanth, D. J. (2019). A comprehensive review on iris image-based biometric system. Soft Computing, 23, 9361–9384. https://doi. org/10. 1007/s00500-018-3497-y

Adamović, S., Miškovic, V., Maček, N., Milosavljević, M., Šarac, M., Saračević, M., & Gnjatović, M. (2020). An efficient novel approach for iris recognition based on stylometric features and machine learning techniques. Future Generation Computer Systems, 107, 144–157. https://doi. org/10. 1016/j. future. 2020. 01. 056

Rai, V., Mehta, K., Jatin, J., Tiwari, D., & Chaurasia, R. (2020). Automated biometric personal identification-techniques and applications. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 1023–1030. https://doi. org/10. 1109/ICICCS48265. 2020. 9120896

Khade, S., Ahirrao, S., Phansalkar, S., Kotecha, K., Gite, S., & Thepade, S. D. (2021). Iris liveness detection for biometric authentication: A systematic literature review and future directions. Inventions, 6(4), 65. https://doi. org/10. 3390/inventions6040065

Malgheet, J. R., Manshor, N. B., Affendey, L. S., & Abdul Halin, A. Bin. (2021). Iris recognition development techniques: a comprehensive review. Complexity, 2021, 1–32. https://doi. org/10. 1155/2021/6641247

Jan, F., & Min-Allah, N. (2020). An effective iris segmentation scheme for noisy images. Biocybernetics and Biomedical Engineering, 40(3), 1064–1080. https://doi. org/10. 1016/j. bbe. 2020. 06. 002

Nguyen, K., Fookes, C., Ross, A., & Sridharan, S. (2017). Iris recognition with off-the-shelf CNN features: A deep learning perspective. IEEE Access, 6, 18848–18855. https://doi. org/10. 1109/ACCESS. 2017. 2784352

Jain, A. K., Ross, A., & Pankanti, S. (2006). Biometrics: a tool for information security. IEEE Transactions on Information Forensics and Security, 1(2), 125–143. https://doi. org/10. 1109/TIFS. 2006. 873653

Singh, G., Singh, R. K., Saha, R., & Agarwal, N. (2020). IWT based iris recognition for image authentication. Procedia Computer Science, 171, 1868–1876. https://doi. org/10. 1016/j. procs. 2020. 04. 200

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53, 5455–5516. https://doi. org/10. 1007/s10462-020-09825-6

Al-Waisy, A. S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., & Nagem, T. A. M. (2018). A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications, 21, 783–802. https://doi. org/10. 1007/s10044-017-0656-1

Ribani, R., & Marengoni, M. (2019). A survey of transfer learning for convolutional neural networks. 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 47–57. https://doi. org/10. 1109/SIBGRAPI-T. 2019. 00010

Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image‐based structural damage recognition. Computer‐Aided Civil and Infrastructure Engineering, 33(9), 748–768. https://doi. org/10. 1111/mice. 12363

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi. org/10. 1109/TKDE. 2009. 191

Casia iris dataset. (2023, December 27). http://biometrics. idealtest. org/ findTotalDbByMode. do?mode=Iris.

Minaee, S., Abdolrashidiy, A., & Wang, Y. (2016). An experimental study of deep convolutional features for iris recognition. 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 1–6. https://doi. org/10. 1109/SPMB. 2016. 7846859

Menon, H., & Mukherjee, A. (2018). Iris biometrics using deep convolutional networks. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–5. https://doi. org/10. 1109/I2MTC. 2018. 8409594

Alaslani, M. G., & Elrefaei, L. A. (2018). Convolutional neural network-based feature extraction for iris recognition. International Journal of Computer Science & Information Technology (IJCSIT) Vol, 10. https://doi.org/10.5121/ijcsit.2018.10102

Gangwar, A., & Joshi, A. (2016). DeepIrisNet: Deep iris representation with applications in iris recognition and cross-sensor iris recognition. 2016 IEEE International Conference on Image Processing (ICIP), 2301–2305. https://doi. org/10. 1109/ICIP. 2016. 7532769

Zhao, Z., & Kumar, A. (2017). Towards more accurate iris recognition using deeply learned spatially corresponding features. Proceedings of the IEEE International Conference on Computer Vision, 3809–3818. https://doi.org/10.1109/ICCV.2017.409

Proença, H., & Alexandre, L. A. (2005). UBIRIS: A noisy iris image database. In 13th International Conference on Image Analysis and Processing - ICIAP 2005 (pp. 970–977). Springer. doi: 10.1007/11553595_119

Ubiris iris dataset. (2023, December 27). http://iris. di. ubi. pt/.

IIT iris dataset. (2023, December 27). https://www4. comp. polyu. edu. hk/~csajaykr/IITD/Database_Iris. Htm

ND-CrossSensor-Iris-2013 Dataset. (2023, December 27). https://cvrl. nd. edu/projects/data/

De Marsico, M., Nappi, M., Riccio, D., & Wechsler, H. (2015). Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognition Letters, 57, 17–23. https://doi. org/10. 1016/j. patrec. 2015. 02. 009

Ahmad, S., & Fuller, B. (2019). Thirdeye: Triplet based iris recognition without normalization. 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1–9. https://doi. org/10. 1109/BTAS46853. 2019. 9185998

Hofbauer, H., Jalilian, E., & Uhl, A. (2019). Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recognition Letters, 120, 17–23. https://doi. org/10. 1016/j. patrec. 2018. 12. 021

Yin, Y., Li, S., & Liu, M. (2023). Deep learning for iris recognition: A review. arXiv preprint arXiv:2303.08514. doi.org https://doi.org/10.48550/arXiv.2303.08514

Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., & Zhang, D. (2023). Biometrics recognition using deep learning: A survey. Artificial Intelligence Review, 56(8), 8647-8695. https://doi.org/10.1007/s10462-023-10462-9

Bhagya Sree (2024). Iris Recognition Using Deep Learning Technique. International Journal of Research Publication and Reviews, Vol 5, no 11, pp 7946-7952 Iris Recognition Using Deep Learning Techniques

Baqar, M., Ghani, A., Aftab, A., Arbab, S., & Yasin, S. (2016). Deep belief networks for iris recognition based on contour detection. 2016 International Conference on Open Source Systems & Technologies (ICOSST), 72–77. https://doi. org/10. 1109/ICOSST. 2016. 7838580

Rasheed, H. H., et al. (2023). Review of iris segmentation and recognition using deep learning to improve biometric application. Journal of Intelligent Systems, 32(1), 20230139. https://doi.org/10.1515/jisys-2023-0139

Moktari, B., et al. (2021). Iris recognition system using convolutional neural network. International Journal of Computing and Digital Systems, 10(1). https://doi.org/10.12785/ijcds/100101

Lee, M. B., Kim, Y. H., & Park, K. R. (2019). Conditional generative adversarial network-based data augmentation for enhancement of iris recognition accuracy. IEEE Access, 7, 122134–122152. https://doi. org/10. 1109/ACCESS. 2019. 2937809

Zhang, Y., Muhammad, J., Wang, Y., Zhang, K., & Sun, Z. (2022). Attention meta-transfer learning approach for few-shot iris recognition. Computers and Electrical Engineering, 101, 108044. doi.org https://doi.org/10.1016/j.compeleceng.2022.108044

Li, J., Muhammad, J., Wang, Y., Zhang, K., & Sun, Z. (2023). Smartphone-based iris recognition through high-quality visible-spectrum iris image capture. Pattern Recognition, 138, 109471. https://doi.org/10.1016/j.patcog.2023.109471

Chen, H., Gouin-Vallerand, C., Bouchard, K., Gaboury, S., Couture, M., Bier, N., & Giroux, S. (2024). Contrastive Self-Supervised Learning for Sensor-Based Human Activity Recognition: A Review. IEEE Access. https://doi.org/10.1109/ACCESS.2024.123456

Downloads

Published

2026-02-09

How to Cite

Ismael Hussein, H., Mustafa Abduallah, W., & Khalid Omer, H. (2026). Iris Recognition Based Deep Learning: A Survey. Dasinya Journal for Engineering and Informatics, 2(1). https://doi.org/10.65542/djei.v2i1.17

Issue

Section

Articles