Iris Recognition Based Deep Learning: A Survey
DOI:
https://doi.org/10.65542/djei.v2i1.17Keywords:
Iris Recognition, Deep Learning, Convolutional Neural Network, Transfer Learning, BiometricsAbstract
The iris recognition system is one of the most reliable biometric authentication systems owing to its individuality and permanence. With the introduction of deep learning concepts, especially CNNs, iris recognition models have improved tremendously in accuracy, robustness, and efficiency. We present an extensive survey summ2arizing the application of deep learning in iris recognition; covering datasets, feature extraction, architectures, and evaluation metrics. We conclude that while CNNs and transfer learning produce the best accuracy on well-constrained datasets, serious challenges lie with cross-sensor generalization and robustness under mobile or unconstrained environments. The new solutions that are generating attention, such as generation adversarial network-based augmentation and attention-driven architectures, are solution pathways to surmount data scarcity and further strengthen the adaptation capability. This survey is aimed at steering researchers and practitioners to various critical challenges and directions that have the most potential for future iris recognition systems.
References
Dargan, S., & Kumar, M. (2020). A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Systems with Applications, 143, 113114. https://doi. org/10. 1016/j. eswa. 2019. 113114
Winston, J. J., & Hemanth, D. J. (2019). A comprehensive review on iris image-based biometric system. Soft Computing, 23, 9361–9384. https://doi. org/10. 1007/s00500-018-3497-y
Adamović, S., Miškovic, V., Maček, N., Milosavljević, M., Šarac, M., Saračević, M., & Gnjatović, M. (2020). An efficient novel approach for iris recognition based on stylometric features and machine learning techniques. Future Generation Computer Systems, 107, 144–157. https://doi. org/10. 1016/j. future. 2020. 01. 056
Rai, V., Mehta, K., Jatin, J., Tiwari, D., & Chaurasia, R. (2020). Automated biometric personal identification-techniques and applications. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 1023–1030. https://doi. org/10. 1109/ICICCS48265. 2020. 9120896
Khade, S., Ahirrao, S., Phansalkar, S., Kotecha, K., Gite, S., & Thepade, S. D. (2021). Iris liveness detection for biometric authentication: A systematic literature review and future directions. Inventions, 6(4), 65. https://doi. org/10. 3390/inventions6040065
Malgheet, J. R., Manshor, N. B., Affendey, L. S., & Abdul Halin, A. Bin. (2021). Iris recognition development techniques: a comprehensive review. Complexity, 2021, 1–32. https://doi. org/10. 1155/2021/6641247
Jan, F., & Min-Allah, N. (2020). An effective iris segmentation scheme for noisy images. Biocybernetics and Biomedical Engineering, 40(3), 1064–1080. https://doi. org/10. 1016/j. bbe. 2020. 06. 002
Nguyen, K., Fookes, C., Ross, A., & Sridharan, S. (2017). Iris recognition with off-the-shelf CNN features: A deep learning perspective. IEEE Access, 6, 18848–18855. https://doi. org/10. 1109/ACCESS. 2017. 2784352
Jain, A. K., Ross, A., & Pankanti, S. (2006). Biometrics: a tool for information security. IEEE Transactions on Information Forensics and Security, 1(2), 125–143. https://doi. org/10. 1109/TIFS. 2006. 873653
Singh, G., Singh, R. K., Saha, R., & Agarwal, N. (2020). IWT based iris recognition for image authentication. Procedia Computer Science, 171, 1868–1876. https://doi. org/10. 1016/j. procs. 2020. 04. 200
Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53, 5455–5516. https://doi. org/10. 1007/s10462-020-09825-6
Al-Waisy, A. S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., & Nagem, T. A. M. (2018). A multi-biometric iris recognition system based on a deep learning approach. Pattern Analysis and Applications, 21, 783–802. https://doi. org/10. 1007/s10044-017-0656-1
Ribani, R., & Marengoni, M. (2019). A survey of transfer learning for convolutional neural networks. 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 47–57. https://doi. org/10. 1109/SIBGRAPI-T. 2019. 00010
Gao, Y., & Mosalam, K. M. (2018). Deep transfer learning for image‐based structural damage recognition. Computer‐Aided Civil and Infrastructure Engineering, 33(9), 748–768. https://doi. org/10. 1111/mice. 12363
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi. org/10. 1109/TKDE. 2009. 191
Casia iris dataset. (2023, December 27). http://biometrics. idealtest. org/ findTotalDbByMode. do?mode=Iris.
Minaee, S., Abdolrashidiy, A., & Wang, Y. (2016). An experimental study of deep convolutional features for iris recognition. 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 1–6. https://doi. org/10. 1109/SPMB. 2016. 7846859
Menon, H., & Mukherjee, A. (2018). Iris biometrics using deep convolutional networks. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–5. https://doi. org/10. 1109/I2MTC. 2018. 8409594
Alaslani, M. G., & Elrefaei, L. A. (2018). Convolutional neural network-based feature extraction for iris recognition. International Journal of Computer Science & Information Technology (IJCSIT) Vol, 10. https://doi.org/10.5121/ijcsit.2018.10102
Gangwar, A., & Joshi, A. (2016). DeepIrisNet: Deep iris representation with applications in iris recognition and cross-sensor iris recognition. 2016 IEEE International Conference on Image Processing (ICIP), 2301–2305. https://doi. org/10. 1109/ICIP. 2016. 7532769
Zhao, Z., & Kumar, A. (2017). Towards more accurate iris recognition using deeply learned spatially corresponding features. Proceedings of the IEEE International Conference on Computer Vision, 3809–3818. https://doi.org/10.1109/ICCV.2017.409
Proença, H., & Alexandre, L. A. (2005). UBIRIS: A noisy iris image database. In 13th International Conference on Image Analysis and Processing - ICIAP 2005 (pp. 970–977). Springer. doi: 10.1007/11553595_119
Ubiris iris dataset. (2023, December 27). http://iris. di. ubi. pt/.
IIT iris dataset. (2023, December 27). https://www4. comp. polyu. edu. hk/~csajaykr/IITD/Database_Iris. Htm
ND-CrossSensor-Iris-2013 Dataset. (2023, December 27). https://cvrl. nd. edu/projects/data/
De Marsico, M., Nappi, M., Riccio, D., & Wechsler, H. (2015). Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognition Letters, 57, 17–23. https://doi. org/10. 1016/j. patrec. 2015. 02. 009
Ahmad, S., & Fuller, B. (2019). Thirdeye: Triplet based iris recognition without normalization. 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1–9. https://doi. org/10. 1109/BTAS46853. 2019. 9185998
Hofbauer, H., Jalilian, E., & Uhl, A. (2019). Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recognition Letters, 120, 17–23. https://doi. org/10. 1016/j. patrec. 2018. 12. 021
Yin, Y., Li, S., & Liu, M. (2023). Deep learning for iris recognition: A review. arXiv preprint arXiv:2303.08514. doi.org https://doi.org/10.48550/arXiv.2303.08514
Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., & Zhang, D. (2023). Biometrics recognition using deep learning: A survey. Artificial Intelligence Review, 56(8), 8647-8695. https://doi.org/10.1007/s10462-023-10462-9
Bhagya Sree (2024). Iris Recognition Using Deep Learning Technique. International Journal of Research Publication and Reviews, Vol 5, no 11, pp 7946-7952 Iris Recognition Using Deep Learning Techniques
Baqar, M., Ghani, A., Aftab, A., Arbab, S., & Yasin, S. (2016). Deep belief networks for iris recognition based on contour detection. 2016 International Conference on Open Source Systems & Technologies (ICOSST), 72–77. https://doi. org/10. 1109/ICOSST. 2016. 7838580
Rasheed, H. H., et al. (2023). Review of iris segmentation and recognition using deep learning to improve biometric application. Journal of Intelligent Systems, 32(1), 20230139. https://doi.org/10.1515/jisys-2023-0139
Moktari, B., et al. (2021). Iris recognition system using convolutional neural network. International Journal of Computing and Digital Systems, 10(1). https://doi.org/10.12785/ijcds/100101
Lee, M. B., Kim, Y. H., & Park, K. R. (2019). Conditional generative adversarial network-based data augmentation for enhancement of iris recognition accuracy. IEEE Access, 7, 122134–122152. https://doi. org/10. 1109/ACCESS. 2019. 2937809
Zhang, Y., Muhammad, J., Wang, Y., Zhang, K., & Sun, Z. (2022). Attention meta-transfer learning approach for few-shot iris recognition. Computers and Electrical Engineering, 101, 108044. doi.org https://doi.org/10.1016/j.compeleceng.2022.108044
Li, J., Muhammad, J., Wang, Y., Zhang, K., & Sun, Z. (2023). Smartphone-based iris recognition through high-quality visible-spectrum iris image capture. Pattern Recognition, 138, 109471. https://doi.org/10.1016/j.patcog.2023.109471
Chen, H., Gouin-Vallerand, C., Bouchard, K., Gaboury, S., Couture, M., Bier, N., & Giroux, S. (2024). Contrastive Self-Supervised Learning for Sensor-Based Human Activity Recognition: A Review. IEEE Access. https://doi.org/10.1109/ACCESS.2024.123456
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Dasinya Journal for Engineering and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dasinya Journal for Engineering and Informatics is licensed under a