Green Synthesis of Metal Oxide Nanoparticles Using Plant Extracts with Emphasis on Vigna unguiculata (Cowpea): A Review
DOI:
https://doi.org/10.65542/djei.v2i1.24Keywords:
Metal Oxide 2, Green Synthesis 3, Cowpea Seed 4, Nanoscale and 5, Eco-Friendly NPsAbstract
The green synthesis of metal oxide nanoparticles is received increasing attention due to its offer more environmentally safe alternative compared to conventional chemical methods, with many promising applications. This review focuses on usage of Vigna unguiculata (cowpea) in biosynthesis of metal oxide nanoparticles by showing its role as sustainable and low-cost reducing and stabilizing agent. The synthesis procedure is described, with emphasis on function of plant phytochemicals which help in the formation of nanoparticles. Different characterization methods are discussed, like field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and UV–Vis spectroscopy, to identify structure, morphology, and chemical nature of the nanoparticles. The review also considers the challenges associated with scaling up green synthesis processes and suggests future research directions to improve practical applications. By addressing these aspects, this review aims to provide a better understanding of the synthesis mechanisms, key properties, and real-world applications of metal oxide nanoparticles produced using Vigna unguiculata, thereby supporting the growing field of green nanotechnology.
References
Harish, K.K.; Nagasamy, V.; Himangshu, B.; Anuttam, K. Metallic Nanoparticle: A Review. Biomed J Sci &Tech Res 2018, 4, doi:10.26717/BJSTR.2018.04.001011.
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein Journal of Nanotechnology 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98.
Kumar, R.; Pulikanti, G.R.; Shankar, K.R.; Rambabu, D.; Mangili, V.; Kumbam, L.R.; Sagara, P.S.; Nakka, N.; Yogesh, M. Surface Coating and Functionalization of Metal and Metal Oxide Nanoparticles for Biomedical Applications. In Metal Oxides for Biomedical and Biosensor Applications; Elsevier, 2022; pp. 205–231.
Dawodu, F.A.; Onuh, C.U.; Akpomie, K.G.; Unuabonah, E.I. Synthesis of Silver Nanoparticle from Vigna Unguiculata Stem as Adsorbent for Malachite Green in a Batch System. SN Appl. Sci. 2019, 1, 346, doi:10.1007/s42452-019-0353-3.
Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019, 1, 607, doi:10.1007/s42452-019-0592-3.
Deline, A.R.; Nason, J.A. Evaluation of Labeling Methods Used for Investigating the Environmental Behavior and Toxicity of Metal Oxide Nanoparticles. Environ. Sci. Nano 2019, 6, 1043–1066, doi:10.1039/C8EN01187G.
Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science (1979). 2011, 331, 746–750, doi:10.1126/science.1200448.
Garcia, G.; Buonsanti, R.; Runnerstrom, E.L.; Mendelsberg, R.J.; Llordes, A.; Anders, A.; Richardson, T.J.; Milliron, D.J. Dynamically Modulating the Surface Plasmon Resonance of Doped Semiconductor Nanocrystals. Nano Lett. 2011, 11, 4415–4420, doi:10.1021/nl202597n.
Buonsanti, R.; Milliron, D.J. Chemistry of Doped Colloidal Nanocrystals. Chemistry of Materials 2013, 25, 1305–1317, doi:10.1021/cm304104m.
Lounis, S.D.; Runnerstrom, E.L.; Bergerud, A.; Nordlund, D.; Milliron, D.J. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals. J. Am. Chem. Soc. 2014, 136, 7110–7116, doi:10.1021/ja502541z.
Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331–349, doi:10.1016/j.apcatb.2012.05.036.
Mustafa, L.L.; Qasim, A.K. Facile Green Synthesis of Mn Doped NiO Nanoparticles Using Vigna Unguiculata Seed for Photocatalytic Degradation of Toluidine Blue. Int. J. Environ. Anal. Chem. 2025, 105, 8902–8922, doi:10.1080/03067319.2025.2487850.
Bhat, S.V.; Deepak, F.L. Tuning the Bandgap of ZnO by Substitution with Mn2+, Co2+ and Ni2+. Solid State Commun. 2005, 135, 345–347, doi:10.1016/j.ssc.2005.05.051.
Lounis, S.D.; Runnerstrom, E.L.; Llordés, A.; Milliron, D.J. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals. J. Phys. Chem. Lett. 2014, 5, 1564–1574, doi:10.1021/jz500440e.
Schimpf, A.M.; Lounis, S.D.; Runnerstrom, E.L.; Milliron, D.J.; Gamelin, D.R. Redox Chemistries and Plasmon Energies of Photodoped In 2 O 3 and Sn-Doped In 2 O 3 (ITO) Nanocrystals. J. Am. Chem. Soc. 2015, 137, 518–524, doi:10.1021/ja5116953.
Kumari, S.; Raturi, S.; Kulshrestha, S.; Chauhan, K.; Dhingra, S.; András, K.; Thu, K.; Khargotra, R.; Singh, T. A Comprehensive Review on Various Techniques Used for Synthesizing Nanoparticles. Journal of Materials Research and Technology 2023, 27, 1739–1763, doi:10.1016/j.jmrt.2023.09.291.
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of Metallic Nanoparticles Using Plant Derivatives and Their New Avenues in Pharmacological Applications – An Updated Report. Saudi Pharmaceutical Journal 2016, 24, 473–484, doi:10.1016/j.jsps.2014.11.013.
Chaudhary, J.; Tailor, G.; Yadav, M.; Mehta, C. Green Route Synthesis of Metallic Nanoparticles Using Various Herbal Extracts: A Review. Biocatal. Agric. Biotechnol. 2023, 50, 102692, doi:10.1016/j.bcab.2023.102692.
Alshammari, B.H.; Lashin, M.M.A.; Mahmood, M.A.; Al-Mubaddel, F.S.; Ilyas, N.; Rahman, N.; Sohail, M.; Khan, A.; Abdullaev, S.S.; Khan, R. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Adv. 2023, 13, 13735–13785, doi:10.1039/D3RA01421E.
Joshi, N.; Pandey, D.K.; Mistry, B.G.; Singh, D.K. Metal Oxide Nanoparticles: Synthesis, Properties, Characterization, and Applications. In Nanomaterials; Springer Nature Singapore: Singapore, 2023; pp. 103–144.
Naikoo, G.A.; Mustaqeem, M.; Hassan, I.U.; Awan, T.; Arshad, F.; Salim, H.; Qurashi, A. Bioinspired and Green Synthesis of Nanoparticles from Plant Extracts with Antiviral and Antimicrobial Properties: A Critical Review. Journal of Saudi Chemical Society 2021, 25, 101304, doi:10.1016/j.jscs.2021.101304.
Radulescu, D.-M.; Surdu, V.-A.; Ficai, A.; Ficai, D.; Grumezescu, A.-M.; Andronescu, E. Green Synthesis of Metal and Metal Oxide Nanoparticles: A Review of the Principles and Biomedical Applications. Int. J. Mol. Sci. 2023, 24, 15397, doi:10.3390/ijms242015397.
S., S. Pharmacological Activities of Vigna Unguiculata (L) Walp: A Review. International Journal of Pharma And Chemical Research 2017, 3, 44–49.
Zaheer, M.; Ahmed, S.; Hassan, M.M. Vigna Unguiculata (L.) Walp. (Papilionaceae): A Review of Medicinal Uses, Phytochemistry and Pharmacology. ~ 1349 ~ Journal of Pharmacognosy and Phytochemistry 2020, 9.
Chatterjee, A.; Abraham, J.; Ajantha, M.; Talekar, A.; Revathy, N. Biosynthesis, Antimicrobial and Cytotoxic Effects of Titanium Dioxide Nanoparticles Using Vigna Unguiculata Seeds. International Journal of Pharmacognosy and Phytochemical Research 2017, 9, 95–99, doi:10.25258/ijpapr.v9i1.8047.
Mohammadi, S.; Pourseyedi, S.; Amini, A. Green Synthesis of Silver Nanoparticles with a Long Lasting Stability Using Colloidal Solution of Cowpea Seeds (Vigna Sp. L). J. Environ. Chem. Eng. 2016, 4, 2023–2032, doi:10.1016/j.jece.2016.03.026.
Jose Vazhacharickal, P.; Krishna, G.S. Green Synthesis of Silver, Copper and Zinc Nanoparticles from Mung Bean (Vigna Radiata) and Cowpea (Vigna Unguiculata) Exudates and Evaluation of Their Antibacterial Activity: An O... International Journal of Current Research and Academic Review Green Synthesis of Silver, Copper and Zinc Nanoparticles from Mung Bean (Vigna Radiata) and Cowpea (Vigna Unguiculata) Exudates and Evaluation of Their Antibacterial Activity: An Overview. Int.J.Curr.Res.Aca.Rev 2022, 10, 48–81, doi:10.20546/ijcrar.2022.1006.006.
Alsukaibi, A.K.D.; Khan, S.; Ali Khan, M.W.; Rafi, Z.; Al-Otaibi, A.; Alshamari, A.K.A.A.; Kaur, K.; Mechi, L.; Alimi, F.R.; Alshammari, E.M.; et al. Eco-Synthesis of Gold Nanoparticles Using Vigna Unguiculata Seed Extract: A Leap in the Direction of Antiglycation Remedies. Sci. Adv. Mater. 2024, 16, 614–623, doi:10.1166/sam.2024.4671.
Perera BR; Kandiah M Microwave Assisted One-Pot Green Synthesis of Silver Nanoparticles Using Leaf Extracts from Vigna Unguiculate: Evaluation of Antioxidant and Antimicrobial Activities; 2018; Vol. 5;.
Ramdath, S.; Mellem, J.; Mbatha, L.S. Anticancer and Antimicrobial Activity Evaluation of Cowpea-Porous-Starch-Formulated Silver Nanoparticles. J. Nanotechnol. 2021, 2021, doi:10.1155/2021/5525690.
Aigbe, U.O.; Osibote, O.A. Green Synthesis of Metal Oxide Nanoparticles, and Their Various Applications. Journal of Hazardous Materials Advances 2024, 13, 100401, doi:10.1016/j.hazadv.2024.100401.
Mulu, M.; Tefera, M.; Guadie, A.; Basavaiah, K. Biosynthesis, Characterization and Study of the Application of Silver Nanoparticle for 4-Nitrophenol Reduction, and Antimicrobial Activities. Biotechnology Reports 2024, 42, e00838, doi:10.1016/j.btre.2024.e00838.
Dawodu, F.A.; Onuh, C.U.; Akpomie, K.G.; Unuabonah, E.I. Synthesis of Silver Nanoparticle from Vigna Unguiculata Stem as Adsorbent for Malachite Green in a Batch System. SN Appl. Sci. 2019, 1, doi:10.1007/s42452-019-0353-3.
Hussain, A.; Ali, S.; Rizwan, M.; Zia ur Rehman, M.; Javed, M.R.; Imran, M.; Chatha, S.A.S.; Nazir, R. Zinc Oxide Nanoparticles Alter the Wheat Physiological Response and Reduce the Cadmium Uptake by Plants. Environmental Pollution 2018, 242, 1518–1526, doi:10.1016/j.envpol.2018.08.036.
Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A Review on Transition Metal Oxides Based Photocatalysts for Degradation of Synthetic Organic Pollutants. Journal of Environmental Sciences 2024, 139, 389–417, doi:10.1016/j.jes.2023.02.051.
Kisimba, K.; Krishnan, A.; Faya, M.; Byanga, K.; Kasumbwe, K.; Vijayakumar, K.; Prasad, R. Synthesis of Metallic Nanoparticles Based on Green Chemistry and Their Medical Biochemical Applications: Synthesis of Metallic Nanoparticles. J. Renew. Mater. 2023, 11, 2575–2591, doi:10.32604/jrm.2023.026159.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Dasinya Journal for Engineering and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dasinya Journal for Engineering and Informatics is licensed under a