Carbon-Doped Boron Nitride: A Metal-Free Catalyst for Superior Photocatalysis and Precision Adsorption

Authors

  • Shinwar Ahmed Idrees Department of Chemistry, University of Zakho https://orcid.org/0000-0001-6975-3527
  • Ramya Danyal Isho Department of Chemistry, University of Zakho

DOI:

https://doi.org/10.65542/djei.v2i1.29

Keywords:

Boron nitride (BN), carbon doped BN, photocatalyst, adsorbent, electrocatalysis

Abstract

Boron nitride (BN) doped with carbon atoms is a new metal-free nanoparticle that has various applications, including photocatalysis and as an adsorbent in adsorption processes. Regarding application as a photocatalyst, in fact, the band gap energy of BN is roughly 5.2 eV, which is very high if compared with metal-based photocatalysts such as TiO₂, ZnO, etc. However, composite and doped BN give excellent activity in photodegradation with gap energy ranging between 1.5 and 2.5 eV. As it is a porous material, it gives extra efficiency to photocatalysis, which provides a larger surface area. With respect to adsorption, the addition of functional groups to BN edges makes the BN nanoparticle selective, which provides porosity, increase active sites and a large surface area, which varies from 100 to 950 m² g⁻¹. Additionally, carbon-doped boron nitride can be used in electrocatalysis processes like carbon dioxide reduction and ammonia synthesis. All in all, carbon-doped boron nitride (BN) shows potential environmental remediation catalyst. Its enhanced photocatalytic activity, large surface area and improved visible light absorption enable BN to degrade pollutants in water medium for environmental clean-up applications. The preparation condition marginally effects the structural, optical and electronic more specifically band edges position of carbon doped BN.

References

T. Chen, Q. Zhang, Z. Xie, C. Tan, P. Chen, Y. Zeng, F. Wang, H. Liu, Y. Liu, G. Liu, W. Lv, Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst, Appl. Catal. B Environ. 238 (2018) 410–421. https://doi.org/10.1016/j.apcatb.2018.07.053. DOI: https://doi.org/10.1016/j.apcatb.2018.07.053

S.A. Idrees, L.A. Jamil, K.M. Omer, Efficient photo-Fenton catalysis using magnetic iron nanoparticles decorated boron nitride quantum dots: theoretical and experimental investigations, RSC Adv. 13 (2023) 6779–6792. DOI: https://doi.org/10.1039/D3RA00234A

S.A. Idrees, L.A. Jamil, K.M. Omer, Silver-loaded carbon and phosphorous co-doped boron nitride quantum dots (Ag@ CP-BNQDs) for efficient organic waste removal: theoretical and experimental investigations, ACS Omega. 7 (2022) 37620–37628. DOI: https://doi.org/10.1021/acsomega.2c04480

S.A. Idrees, L.A. Jamil, K.H. Hama Aziz, K.M. Omer, Synergetic Photocatalytic Activity of Metal-Free Boron Nitride Quantum Dots and Graphitic Carbon Nitride: Harnessing Visible Light for Organic Waste Elimination–A Theoretical and Experimental Approach, Catal. Letters. (2024) 1–17. DOI: https://doi.org/10.1007/s10562-024-04628-8

S.A. Idrees, L.A. Jamil, K.M. Omer, Fabrication of novel metal-free phosphorous doped boron nitride as UV. active photo-catalyst, Iran. J. Catal. 11 (2021) 405–416.

Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications, Chem. Soc. Rev. 45 (2016) 3989–4012. https://doi.org/10.1039/c5cs00869g. DOI: https://doi.org/10.1039/C5CS00869G

S.A. Idrees, L.A. Jamil, K.M. Omer, Metal free boron nitride quantum dots (BNQDs) as ultraviolet driven photo-catalyst for organic waste removal, theoretical calculations and experimental study, in: AIP Conf. Proc., AIP Publishing LLC, 2024: p. 20012. DOI: https://doi.org/10.1063/5.0204492

J. Yu, L. Qin, Y. Hao, S. Kuang, X. Bai, Y.M. Chong, W. Zhang, E. Wang, Vertically aligned boron nitride nanosheets: Chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity, ACS Nano. 4 (2010) 414–422. https://doi.org/10.1021/nn901204c. DOI: https://doi.org/10.1021/nn901204c

X.F. Jiang, Q. Weng, X. Bin Wang, X. Li, J. Zhang, D. Golberg, Y. Bando, Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review, J. Mater. Sci. Technol. 31 (2015) 589–598. https://doi.org/10.1016/j.jmst.2014.12.008. DOI: https://doi.org/10.1016/j.jmst.2014.12.008

R.T. Paine, C.K. Narula, Synthetic Routes to Boron Nitride, Chem. Rev. 90 (1990) 73–91. https://doi.org/10.1021/cr00099a004. DOI: https://doi.org/10.1021/cr00099a004

Q. Weng, X. Wang, C. Zhi, Y. Bando, D. Golberg, Boron nitride porous microbelts for hydrogen storage, ACS Nano. 7 (2013) 1558–1565. https://doi.org/10.1021/nn305320v. DOI: https://doi.org/10.1021/nn305320v

P. Wu, W. Zhu, Y. Chao, J. Zhang, P. Zhang, H. Zhu, C. Li, Z. Chen, H. Li, S. Dai, A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization, Chem. Commun. 52 (2016) 144–147. https://doi.org/10.1039/c5cc07830j. DOI: https://doi.org/10.1039/C5CC07830J

C.Y. Zhi, Y. Bando, T. Terao, C.C. Tang, H. Kuwahara, D. Golberg, Chemically activated boron nitride nanotubes, Chem. - An Asian J. 4 (2009) 1536–1540. https://doi.org/10.1002/asia.200900158. DOI: https://doi.org/10.1002/asia.200900158

T. Sainsbury, T. Ikuno, D. Okawa, D. Pacilé, J.M.J. Fréchet, A. Zettl, Self-assembly of gold nanoparticles at the surface of amine- and thiol-functionalized boron nitride nanotubes, J. Phys. Chem. C. 111 (2007) 12992–12999. https://doi.org/10.1021/jp072958n. DOI: https://doi.org/10.1021/jp072958n

D. Kim, S. Nakajima, T. Sawada, M. Iwasaki, S. Kawauchi, C. Zhi, Y. Bando, D. Golberg, T. Serizawa, Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling, Chem. Commun. 51 (2015) 7104–7107. https://doi.org/10.1039/c5cc00388a. DOI: https://doi.org/10.1039/C5CC00388A

D. Golberg, Y. Bando, C. Tang, C. Zni, Boron nitride nanotubes, Adv. Mater. 19 (2007) 2413–2432. https://doi.org/10.1002/adma.200700179. DOI: https://doi.org/10.1002/adma.200700179

F. Guo, J. Zhao, F. Li, D. Kong, H. Guo, X. Wang, H. Hu, L. Zong, J. Xu, Polar crystalline phases of PVDF induced by interaction with functionalized boron nitride nanosheets, CrystEngComm. 22 (2020) 6207–6215. https://doi.org/10.1039/d0ce01001d. DOI: https://doi.org/10.1039/D0CE01001D

Z. He, C. Kim, L. Lin, T.H. Jeon, S. Lin, X. Wang, W. Choi, Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis, Nano Energy. 42 (2017) 58–68. https://doi.org/10.1016/j.nanoen.2017.10.043. DOI: https://doi.org/10.1016/j.nanoen.2017.10.043

C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin, M. Antonietti, X. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun. 6 (2015). https://doi.org/10.1038/ncomms8698. DOI: https://doi.org/10.1038/ncomms8698

H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L.G. Samuel, P.M. Ajayan, J.M. Tour, Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction, ACS Nano. 8 (2014) 10837–10843. DOI: https://doi.org/10.1021/nn504637y

H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction, J. Am. Chem. Soc. 137 (2015) 7588–7591. https://doi.org/10.1021/jacs.5b03799. DOI: https://doi.org/10.1021/jacs.5b03799

O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature. 464 (2010) 571–574. https://doi.org/10.1038/nature08879. DOI: https://doi.org/10.1038/nature08879

Y. Liu, R.M. Wentzcovitch, M.L. Cohen, Atomic arrangement and electronic structure of BC2N Amy, Phys. Rev. B. 39 (1989) 1760–1765. https://doi.org/https://doi.org/10.1103/PhysRevB.39.1760. DOI: https://doi.org/10.1103/PhysRevB.39.1760

N.X. Qiu, C.H. Zhang, Y. Xue, Tuning Hydrogen Storage in Lithium-Functionalized BC2N Sheets by Doping with Boron and Carbon, ChemPhysChem. 15 (2014) 3015–3025. https://doi.org/10.1002/cphc.201402246. DOI: https://doi.org/10.1002/cphc.201402246

Z. Liu, M. Zhang, H. Wang, D. Cang, X. Ji, B. Liu, W. Yang, D. Li, J. Liu, Defective Carbon-Doped Boron Nitride Nanosheets for Highly Efficient Electrocatalytic Conversion of N2 to NH3, ACS Sustain. Chem. Eng. 8 (2020) 5278–5286. https://doi.org/10.1021/acssuschemeng.0c00330. DOI: https://doi.org/10.1021/acssuschemeng.0c00330

J. Xiong, W. Zhu, H. Li, L. Yang, Y. Chao, P. Wu, S. Xun, W. Jiang, M. Zhang, H. Li, Carbon-doped porous boron nitride: Metal-free adsorbents for sulfur removal from fuels, J. Mater. Chem. A. 3 (2015) 12738–12747. https://doi.org/10.1039/c5ta01346a. DOI: https://doi.org/10.1039/C5TA01346A

L. Chen, M. Zhou, Z. Luo, M. Wakeel, A.M. Asiri, X. Wang, Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution, Appl. Catal. B Environ. 241 (2019) 246–255. https://doi.org/10.1016/j.apcatb.2018.09.034. DOI: https://doi.org/10.1016/j.apcatb.2018.09.034

R. Shankar, D. Lubert-Perquel, E. Mistry, I. Nevjestić, S. Heutz, C. Petit, Water-Stable Boron-Doped Boron Nitride Photocatalyst for Visible Light-Driven H2 Evolution and CO2 Photoreduction, (2020). https://doi.org/10.26434/chemrxiv.12333314. DOI: https://doi.org/10.26434/chemrxiv.12333314.v1

Q. Lu, J. An, Y. Duan, Q. Luo, Y. Shang, Q. Liu, Y. Tang, J. Huang, C. Tang, R. Yin, D. Wang, Highly Efficient and Selective Carbon-Doped BN Photocatalyst Derived from a Homogeneous Precursor Reconfiguration, Catalysts. 12 (2022). https://doi.org/10.3390/catal12050555. DOI: https://doi.org/10.3390/catal12050555

Q. Shentu, Z. Wu, W. Song, S. Pan, Z. Zhou, W. Lv, C. Song, Y. Yao, Carbon doped boron nitride nanosheet as efficient metal-free catalyst for peroxymonosulfate activation: Important role of B-N-C moieties, Chem. Eng. J. 446 (2022) 137274. https://doi.org/https://doi.org/10.1016/j.cej.2022.137274. DOI: https://doi.org/10.1016/j.cej.2022.137274

Y. Sun, J. Bian, Q. Zhu, Sulfamethoxazole removal of adsorption by carbon–Doped boron nitride in water, J. Mol. Liq. 349 (2022) 118216. DOI: https://doi.org/10.1016/j.molliq.2021.118216

X. Duan, G. Song, C. Song, G. Lu, Y. Wang, J. Sun, A. Chen, X. Xie, Photoinduced enhanced CO2 capture performance on carbon-doped boron nitride adsorbent, Sep. Purif. Technol. 339 (2024) 126685. DOI: https://doi.org/10.1016/j.seppur.2024.126685

Downloads

Published

2026-02-07

How to Cite

Ahmed Idrees, S., & Danyal Isho, R. (2026). Carbon-Doped Boron Nitride: A Metal-Free Catalyst for Superior Photocatalysis and Precision Adsorption. Dasinya Journal for Engineering and Informatics, 2(1). https://doi.org/10.65542/djei.v2i1.29

Issue

Section

Articles