Green Synthesis of Ag2O Nanoparticles by Using Plant Extract: A Review
Keywords:
Silver Oxide NPs; green synthesis, nanomaterials; plant extract; fungi.Abstract
Studying materials at the nanoscale is the focus of the quickly expanding science of nanotechnology. Conventional techniques for producing metal nanoparticles need sophisticated equipment or costly ingredients. Moreover, the techniques may not be environmentally safe. Therefore, while synthesizing nanoparticles, "green" techniques that are simple to use, reasonably priced, environmentally benign, and convenient are always used. Using biological sources to produce nanoparticles is a novel process known as "green synthesis." Its large-scale, ecologically friendly, and competitively cost production alternatives are contributing to its growing popularity. Green methods of synthesizing nanomaterials involve the usage of biological natural systems. This review highlights the development for environmentally favorable to traditional methods for nanoparticle production. Complete the usage of energy-low processes also naturally occurring starting materials, green synthesis provides an equally effective, if not more effective, sustainable method of fabricating nanomaterials than normal synthesis. There have been recent reports of successful attempts to synthesis various nanoparticle systems by using active compounds found in naturally occurring biological systems, including bacteria, algae, yeast, and fungus. Therefore, employing green synthesis in large-scale manufacturing and research offers a practical way to overcome the drawbacks of conventional synthesis techniques.
References
Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1), 17–28. https://doi.org/10.1016/j.jare.2015.02.007
Ahmed, S., Annu, Ikram, S., & Yudha, S. (2016). Biosynthesis of gold nanoparticles: A green approach. Journal of Photochemistry and Photobiology B: Biology, 161, 141–153. https://doi.org/10.1016/j.jphotobiol.2016.04.034
Ayelén Vélez, M., Cristina Perotti, M., Santiago, L., María Gennaro, A., & Hynes, E. (2016). Bioactive compounds delivery using nanotechnology: design and applications in dairy food. In Nutrient Delivery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804304-2.00006-8
Ayyub, P., Chandra, R., Taneja, P., Sharma, A. K., & Pinto, R. (2001). Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Applied Physics A: Materials Science and Processing, 73(1), 67–73. https://doi.org/10.1007/s003390100833
Bagheri, S., & Julkapli, N. M. (2016). Modified iron oxide nanomaterials: Functionalization and application. Journal of Magnetism and Magnetic Materials, 416, 117–133. https://doi.org/10.1016/j.jmmm.2016.05.042
Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19(1), 1–26. https://doi.org/10.1186/s12951-021-00834-3
Bera, A., & Belhaj, H. (2016). Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery - A comprehensive review. Journal of Natural Gas Science and Engineering, 34, 1284–1309. https://doi.org/10.1016/j.jngse.2016.08.023
Biswas, A., Vanlalveni, C., Adhikari, P. P., Lalfakzuala, R., & Rokhum, L. (2018). Green biosynthesis, characterisation and antimicrobial activities of silver nanoparticles using fruit extract of Solanum viarum. IET Nanobiotechnology, 12(7), 933–938. https://doi.org/10.1049/iet-nbt.2018.0050
Changmai, B., Sudarsanam, P., & Rokhum, S. L. (2020). Biodiesel production using a renewable mesoporous solid catalyst. Industrial Crops and Products, 145(October), 111911. https://doi.org/10.1016/j.indcrop.2019.111911
Choi, J., Kim, K., Han, H. S., Hwang, M. P., & Lee, K. H. (2014). Electrochemical synthesis of red fluorescent silicon nanoparticles. Bulletin of the Korean Chemical Society, 35(1), 35–38. https://doi.org/10.5012/bkcs.2014.35.1.35
Faramarzi, S., Anzabi, Y., & Jafarizadeh-Malmiri, H. (2020). Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Archives of Microbiology, 202(5), 1203–1209. https://doi.org/10.1007/s00203-020-01831-0
Fardsadegh, B., & Jafarizadeh-Malmiri, H. (2019). Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Processing and Synthesis, 8(1), 399–407. https://doi.org/10.1515/gps-2019-0007
Frewer, L. J., Gupta, N., George, S., Fischer, A. R. H., Giles, E. L., & Coles, D. (2014). Consumer attitudes towards nanotechnologies applied to food production. Trends in Food Science and Technology, 40(2), 211–225. https://doi.org/10.1016/j.tifs.2014.06.005
Gahlot, A. (2021). Physical Methods of Nanoparticles Preparation-An Overview. International Journal of Advances in Engineering and Management (IJAEM), 3(12), 812. https://doi.org/10.35629/5252-0312812816
Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 19(4), 1357–1361. https://doi.org/10.1021/la020835i
Goutam, S. P., Saxena, G., Roy, D., Yadav, A. K., & Bharagava, R. N. (2020). Green Synthesis of Nanoparticles and Their Applications in Water and Wastewater Treatment. In Bioremediation of Industrial Waste for Environmental Safety (Issue Dm). https://doi.org/10.1007/978-981-13-1891-7_16
Gow, N. A. R., & Yadav, B. (2017). Microbe profile: Candida albicans: A shape-changing, opportunistic pathogenic fungus of humans. Microbiology (United Kingdom), 163(8), 1145–1147. https://doi.org/10.1099/mic.0.000499
Güneş, F., Shin, H. J., Biswas, C., Han, G. H., Kim, E. S., Chae, S. J., Choi, J. Y., & Lee, Y. H. (2010). Layer-by-layer doping of few-layer graphene film. ACS Nano, 4(8), 4595–4600. https://doi.org/10.1021/nn1008808
Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., Hariharan, N., & Eom, S. H. (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), 328–335. https://doi.org/10.1016/j.colsurfb.2009.07.048
Gutiérrez, M., & Henglein, A. (1993). Formation of colloidal silver by “push-pull” reduction of Ag+. Journal of Physical Chemistry, 97(44), 11368–11370. https://doi.org/10.1021/j100146a003
Handel, A. E., Ebers, G. C., & Ramagopalan, S. V. (2010). Epigenetics: molecular mechanisms and implications for disease. Trends in Molecular Medicine, 16(1), 7–16. https://doi.org/10.1016/j.molmed.2009.11.003
Hirsch, T., Zharnikov, M., Shaporenko, A., Stahl, J., Weiss, D., Wolfbeis, O. S., & Mirsky, V. M. (2005). Size-controlled electrochemical synthesis of metal nanoparticles on monomolecular templates. Angewandte Chemie - International Edition, 44(41), 6775–6778. https://doi.org/10.1002/anie.200500912
Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650. https://doi.org/10.1039/c1gc15386b
Iravani, S., Korbekandi, H., Mirmohammadi, S. V, & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physicIravani, S., Korbekandi, H., Mirmohammadi, S. V, & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406. . Research in Pharmaceutical Sciences, 9(6), 385–406. http://www.ncbi.nlm.nih.gov/pubmed/26339255%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4326978
Jung, J. H., Cheol Oh, H., Soo Noh, H., Ji, J. H., & Soo Kim, S. (2006). Metal nanoparticle generation using a small ceramic heater with a local heating area. Journal of Aerosol Science, 37(12), 1662–1670. https://doi.org/10.1016/j.jaerosci.2006.09.002
Khan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and Therapeutic Potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373–379. https://doi.org/10.2174/138920105774370607
Kharissova, O. V., Kharisov, B. I., González, C. M. O., Méndez, Y. P., & López, I. (2019). Greener synthesis of chemical compounds and materials. In Royal Society Open Science (Vol. 6, Issue 11). https://doi.org/10.1098/rsos.191378
Khatoon, N., Mazumder, J. A., & Sardar, M. (2017). Biotechnological Applications of Green Synthesized Silver Nanoparticles. Journal of Nanosciences: Current Research, 02(01), 1–8. https://doi.org/10.4172/2572-0813.1000107
Kim, M., Osone, S., Kim, T., Higashi, H., & Seto, T. (2017). Synthesis of nanoparticles by laser ablation: A review. KONA Powder and Particle Journal, 2017(34), 80–90. https://doi.org/10.14356/kona.2017009
Kmis, F. E., Fissan, H., & Rellinghaus, B. (2000). Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 69, 329–334. https://doi.org/10.1016/S0921-5107(99)00298-6
Kora, A. J., Sashidhar, R. B., & Arunachalam, J. (2010). Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers, 82(3), 670–679. https://doi.org/10.1016/j.carbpol.2010.05.034
Kumar, A., Vemula, P. K., Ajayan, P. M., & John, G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 7(3), 236–241. https://doi.org/10.1038/nmat2099
Kumar, H., Bhardwaj, K., Kuča, K., Kalia, A., Nepovimova, E., Verma, R., & Kumar, D. (2020). Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials, 10(4). https://doi.org/10.3390/nano10040766
Kumar, P., Senthamil Selvi, S., Lakshmi Prabha, A., Prem Kumar, K., Ganeshkumar, R. S., & Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomedicine and Engineering, 4(1), 12–16. https://doi.org/10.5101/nbe.v4i1.p12-16
Liu, T., Baek, D. R., Kim, J. S., Joo, S. W., & Lim, J. K. (2020). Green Synthesis of Silver Nanoparticles with Size Distribution Depending on Reducing Species in Glycerol at Ambient pH and Temperatures. ACS Omega, 5(26), 16246–16254. https://doi.org/10.1021/acsomega.0c02066
Magnusson, M. H., Deppert, K., Malm, J., Bovin, J., & Samuelson, L. (1999). . 243–251.
Marchiol, L., Mattiello, A., Pošćić, F., Giordano, C., & Musetti, R. (2014). In vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Research Letters, 9(1), 1–11. https://doi.org/10.1186/1556-276X-9-101
Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I., & Radomski, M. W. (2007). Nanoparticles: Pharmacological and toxicological significance. British Journal of Pharmacology, 150(5), 552–558. https://doi.org/10.1038/sj.bjp.0707130
Meshesha, B. T., Barrabés, N., Medina, F., & Sueiras, J. E. (2009). Polyol mediated synthesis & characterization of Cu nanoparticles : Effect of 1-hexadecylamine as stabilizing agent. Nanotechnology, February, 87–91.
Momeni, S., & Nabipour, I. (2015). A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide. Applied Biochemistry and Biotechnology, 176(7), 1937–1949. https://doi.org/10.1007/s12010-015-1690-3
Moulton, M. C., Braydich-Stolle, L. K., Nadagouda, M. N., Kunzelman, S., Hussain, S. M., & Varma, R. S. (2010). Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale, 2(5), 763–770. https://doi.org/10.1039/c0nr00046a
Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parishcha, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters, 1(10), 515–519. https://doi.org/10.1021/nl0155274
Nasretdinova, G. R., Fazleeva, R. R., Mukhitova, R. K., Nizameev, I. R., Kadirov, M. K., Ziganshina, A. Y., & Yanilkin, V. V. (2015). Electrochemical synthesis of silver nanoparticles in solution. Electrochemistry Communications, 50(December), 69–72. https://doi.org/10.1016/j.elecom.2014.11.016
Newfang, D. A., Johnson, G. T., & Harbison, R. D. (2015). Nanoparticles. Hamilton and Hardy’s Industrial Toxicology: Sixth Edition, 5(June), 1025–1028. https://doi.org/10.1002/9781118834015.ch97
Nour, S., Baheiraei, N., Imani, R., Khodaei, M., Alizadeh, A., Rabiee, N., & Moazzeni, S. M. (2019). A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. Journal of Materials Science: Materials in Medicine, 30(10). https://doi.org/10.1007/s10856-019-6319-6
Oliveira, M. M., Ugarte, D., Zanchet, D., & Zarbin, A. J. G. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 292(2), 429–435. https://doi.org/10.1016/j.jcis.2005.05.068
Pal, A., Shah, S., & Devi, S. (2009). Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Materials Chemistry and Physics, 114(2–3), 530–532. https://doi.org/10.1016/j.matchemphys.2008.11.056
Philip, D. (2009). Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 73(2), 374–381. https://doi.org/10.1016/j.saa.2009.02.037
Priyabrata Mukherjee, Satyajyoti Senapati, Deendayal Mandal, Absar Ahmad, M. Islam Khan, RajivKumar, and M. S. (2002). Extracellular Synthesis of Gold.pdf. Chem Bio Chem., 5(5), 461–463.
Quievryn, C., Bernard, S., & Miele, P. (2014). Polyol-based synthesis of praseodymium oxide nanoparticles. Nanomaterials and Nanotechnology, 4(1), 1–8. https://doi.org/10.5772/58458
Raghavan, D., Zewde, B., Ambaye, A., Stubbs III, J., & Raghavan, D. (2016). A Review of Stabilized Silver Nanoparticles – Synthesis, Biological Properties, Characterization, and Potential Areas of Applications. JSM Nanotechnol Nanomed, 4(2), 1043.
Roychoudhury, P., & Pal, R. (2011). Synthesis and Characterization of Nanosilver-A blue green approach. Indian Journal of Applied Research, 4(1), 54–56. https://doi.org/10.15373/2249555x/jan2014/17
Sahayaraj, K., & Rajesh, S. (2011). Bionanoparticles: Synthesis and antimicrobial applications. Science against Microbial Pathogens: …, 228–244. http://www.formatex.info/microbiology3/book/228-244.pdf
Saiqa Ikram, S. A. (2015). Silver Nanoparticles: One Pot Green Synthesis Using Terminalia arjuna Extract for Biological Application. Journal of Nanomedicine & Nanotechnology, 06(04). https://doi.org/10.4172/2157-7439.1000309
Saravanakumar, K., Chelliah, R., Shanmugam, S., Varukattu, N. B., Oh, D. H., Kathiresan, K., & Wang, M. H. (2018). Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. Journal of Photochemistry and Photobiology B: Biology, 185, 126–135. https://doi.org/10.1016/j.jphotobiol.2018.05.032
Sasidharan, D., Namitha, T. R., Johnson, S. P., Jose, V., & Mathew, P. (2020). Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: Antimicrobial and catalytic applications. Sustainable Chemistry and Pharmacy, 16(October 2019), 100255. https://doi.org/10.1016/j.scp.2020.100255
Sebestyén, V. (2021). Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renewable and Sustainable Energy Reviews, 151(December 2020). https://doi.org/10.1016/j.rser.2021.111626
Senapati, S., Syed, A., Moeez, S., Kumar, A., & Ahmad, A. (2012). Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 79, 116–118. https://doi.org/10.1016/j.matlet.2012.04.009
Shanmuganathan, R., Karuppusamy, I., Saravanan, M., Muthukumar, H., Ponnuchamy, K., Ramkumar, V. S., & Pugazhendhi, A. (2019). Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review. Current Pharmaceutical Design, 25(24), 2650–2660. https://doi.org/10.2174/1381612825666190708185506
Shih, C. Y., Shugaev, M. V., Wu, C., & Zhigilei, L. V. (2017). Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study. Journal of Physical Chemistry C, 121(30), 16549–16567. https://doi.org/10.1021/acs.jpcc.7b02301
Singh, N. B. (2022). Green synthesis of nanomaterials. Handbook of Microbial Nanotechnology, 225–254. https://doi.org/10.1016/B978-0-12-823426-6.00007-3
Sinha, S. N., Paul, D., Halder, N., Sengupta, D., & Patra, S. K. (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience (Switzerland), 5(6), 703–709. https://doi.org/10.1007/s13204-014-0366-6
Sivaraj, A., Kumar, V., Sunder, R., Parthasarathy, K., & Kasivelu, G. (2020). Commercial Yeast Extracts Mediated Green Synthesis of Silver Chloride Nanoparticles and their Anti-mycobacterial Activity. Journal of Cluster Science, 31(1), 287–291. https://doi.org/10.1007/s10876-019-01626-4
Starowicz, M., Stypuła, B., & Banaś, J. (2006). Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 8(2), 227–230. https://doi.org/10.1016/j.elecom.2005.11.018
Stozhko, N. Y., Bukharinova, M. A., Khamzina, E. I., Tarasov, A. V., Vidrevich, M. B., & Brainina, K. Z. (2019). The effect of the antioxidant activity of plant extracts on the properties of gold nanoparticles. Nanomaterials, 9(12), 1–16. https://doi.org/10.3390/nano9121655
Surudžić, R., Jovanović, Ž., Bibić, N., Nikolić, B., & Miskovic-Stankovic, V. (2013). Electrochemical synthesis of silver nanoparticles in poly(vinyl alcohol) solution. Journal of the Serbian Chemical Society, 78(12), 2087–2098. https://doi.org/10.2298/JSC131017124S
Vijayan, S. R., Santhiyagu, P., Ramasamy, R., Arivalagan, P., Kumar, G., Ethiraj, K., & Ramaswamy, B. R. (2016). Seaweeds: A resource for marine bionanotechnology. Enzyme and Microbial Technology, 95, 45–57. https://doi.org/10.1016/j.enzmictec.2016.06.009
Xu, C., Akakuru, O. U., Zheng, J., & Wu, A. (2019). Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Frontiers in Bioengineering and Biotechnology, 7(JUN), 1–15. https://doi.org/10.3389/fbioe.2019.00141
Yin, Y., Li, Z. Y., Zhong, Z., Gates, B., Xia, Y., & Venkateswaran, S. (2002). Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Journal of Materials Chemistry, 12(3), 522–527. https://doi.org/10.1039/b107469e
Yunus, M., Triyana, K., & Suharyadi, E. (2016). Chloride ion addition for controlling shapes and properties of silver nanorods capped by polyvinyl alcohol synthesized using polyol method Retraction : Chloride Ion Addition for Controlling Shapes and Properties of Silver Nanorods Capped by Polyvinyl Alcohol Synthesized using Polyol Method , Junaidi , Muhammad Yunus , Kuwat Triyana , Harsojo , and Edi Suharyadi , AIP Conf . Proc . 1725 , 020031 ( 2016 ) At the request of all authors the above article is being retracted due to the fact that it is a duplication of article 020092 in the same volume : Chloride Ion Addition for Controlling Shapes and Properties of Silver Nanorods Capped by Polyvinyl Alcohol Synthesized by Polyol Method , Junaidi , Kuwat Triyana , Harsojo , and Edi Suharyadi , AIP Conf . Proc . 1725 , 020092 ( 2016 ). This article is retracted from the scientific record with effect from 8 July 2016 . 020031.
Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9). https://doi.org/10.3390/ijms17091534
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dasinya Journal for Engineering and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dasinya journal is licensed under a