Harnessing Natural Dyes and Nanomaterials for DSSC Innovation: A Review of Experimental and Materials Trends
DOI:
https://doi.org/10.65542/djei.v2i1.30Keywords:
DSSCs; Natural dyes; Photoanodes; Nanoparticles; Electrolyte solution.Abstract
This review covers recent developments in dye-sensitized solar cells, focusing on natural pigments, nanostructures in photoanodes, and modifications to electrolytes, which all relate to the enhancement of device performance. Anthocyanins, chlorophyll, and carotenoids are some natural dyes that are under investigation as alternatives to ruthenium-based synthetic dyes. However, they still have some drawbacks due to their restricted absorption spectra and low stability. Enhanced extraction methods have realized 30% gains in dye performance. The design and composition of the photoanode play a significant role in DSSC efficiency. The latest progress in doping TiO₂ with materials like silver and graphene, adding other semiconductors such as ZnO and MoS₂, has established efficiencies as high as 10.35% for DSSCs. Moreover, interface modification, especially the use of alternative electrolytes, replacing the conventional iodide/triiodide system with cobalt, copper complexes, has attained higher efficiencies up to 14.4%. However, stability in volatile solvents remains a challenge. This review considers DSSCs to become one of the practical renewable energy technologies, yet some important limitations, together with ways for future research, are emphasized.
References
Praveen, E., Peter, I. J., Kumar, A. M., Ramachandran, K., & Jayakumar, K. (2020). Performance of phototronically activated chitosan electrolyte in rare-earth doped Bi₂Ti₂O₇ nanostructure based DSSC. Materials Letters, 276, 128202. https://doi.org/10.1016/j.matlet.2020.128202
Praveen, E., Peter, I. J., Kumar, A. M., Ramachandran, K., & Jayakumar, K. (2020). Boosting of power conversion efficiency of 2D ZnO nanostructures-based DSSC by the Lorentz force with chitosan polymer electrolyte. Journal of Inorganic and Organometallic Polymers and Materials, 30, 4927–4943. https://doi.org/10.1007/s10904-020-01587-2
Priyono, B., Yuwono, A. H., Syahrial, A. Z., Mustofa, M. H., & Bawono, R. S. (2018). Performance of post-hydrothermally treated xerogel TiO₂ dye-sensitized solar cell (DSSC) and its nanostructure characteristic. Materials Science and Engineering, 432, 12–30. https://doi.org/10.1088/1757-899X/432/1/012030
Aneesiya, K. R., & Louis, C. (2020). Localized surface plasmon resonance of Cu-doped ZnO nanostructures and the material’s integration in dye-sensitized solar cells (DSSCs) enabling high open-circuit potentials. Journal of Alloys and Compounds, 829, 154497. https://doi.org/10.1016/j.jallcom.2020.154497
Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595–6663. https://doi.org/10.1021/cr900356p
Amao, Y., & Komori, T. (2004). Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO₂ film electrode. Biosensors and Bioelectronics, 19, 843–847. https://doi.org/10.1016/S0956-5663(03)00208-5
Ludin, N. A., Mahmoud, A. M. A.-A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., & Karim, N. S. A. (2014). Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 31, 386–396. https://doi.org/10.1016/j.rser.2013.11.001
Zainudin, S. N. F., Abdullah, H., & Markom, M. (2019). Electrochemical studies of tin oxide based dye-sensitized solar cells (DSSC): A review. Journal of Materials Science: Materials in Electronics, 30, 5342–5356. https://doi.org/10.1007/s10854-019-00725-1
García-Salinas, M. J., & Ariza, M. J. (2019). Optimizing a simple natural dye production method for dye-sensitized solar cells: Examples for Betalain (Bougainvillea and Beetroot Extracts) and anthocyanin dyes. Applied Sciences, 9(12), 2515. https://doi.org/10.3390/app9122515
Ambapuram, M., Maddala, G., Simhachalam, N. B., Sripada, S., Kalvapalli, S., Pedda, V. S. Y., & Mitty, R. (2020). Highly effective SnS composite counter electrode sandwiched bi-function CeO₂:Er³⁺/Yb³⁺ assisted surface modified photoelectroded dye sensitized solar cell exceeds 9.5% efficiency. Solar Energy, 207, 1158–1164. https://doi.org/10.1016/j.solener.2020.07.017
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature, 353, 737–740. https://doi.org/10.1038/353737a0
Buraidah, M. H., Teo, L. P., Sahdan, M. Z., Majid, S. R., & Arof, A. K. (2014). Photovoltaic performance of natural dye-sensitized solar cell using different electrolytes. International Journal of Electrochemical Science, 9, 4987–4997.
Zhang, Q., & Cao, G. (2011). Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 6(1), 91–109. https://doi.org/10.1016/j.nantod.2011.02.004
Nazeeruddin, M. K., et al. (2001). Engineering of efficient panchromatic sensitizers for nano-crystalline TiO₂-based solar cells. Journal of the American Chemical Society, 123(8), 1613–1624.
Ghosh, R., Samanta, A., Paul, A., & Roy, A. (2021). Enhanced photovoltaic performance of dye-sensitized solar cells with silver-graphene doped TiO₂ photoanode. Materials Today: Proceedings, 44, 4164–4170. https://doi.org/10.1016/j.matpr.2020.11.791
Bashar, H., Bhuiyan, M. M. H., Hossain, M. R., Kabir, F., Rahaman, M. S., Manir, M. S., & Ikegami, T. (2019). Study on combination of natural red and green dyes to improve the power conversion efficiency of dye sensitized solar cells. Optik, 185, 620–625.
Kabir, F., Bhuiyan, M. M. H., Manir, M. S., Rahaman, M. S., Khan, M. A., & Ikegami, T. (2019). Development of dye-sensitized solar cells based on a combination of natural dyes extracted from Malabar spinach and red spinach. Results in Physics, 14, 102474
Narayan, M. R., Muthukumaran, S., & Subramanian, V. (2020). Influence of extraction techniques on the performance of natural dye sensitized solar cells (NDSSCs): A review. Renewable and Sustainable Energy Reviews, 121, 109709. https://doi.org/10.1016/j.rser.2019.109709
Fadhilah, N., Pratama, D. Y., Sawitri, D., & Risanti, D. D. (2019). Preparation of Au@TiO₂@SiO₂ core-shell nanostructure and their light harvesting capability on DSSC (dye sensitized solar cells). AIP Conference Proceedings, 2088, 060007.
Kumar, K. A., Pandurangan, A., Arumugam, S., & Sathiskumar, M. (2019). Effect of bi-functional hierarchical flower-like CoS nanostructure on its interfacial charge transport kinetics, magnetic and electrochemical behaviors for supercapacitor and DSSC applications. Scientific Reports, 9, 1–16.
Rajamanickam, N., Isogami, S., & Ramachandran, K. (2020). Effect of Co doping for improved photovoltaic performance of dye-sensitized solar cells in BaSnO₃ nanostructures. Materials Letters, 275, 128139.
Aksoy, S., Polat, O., Gorgun, K., Caglar, Y., & Caglar, M. (2020). Li doped ZnO based DSSC: Characterization and preparation of nanopowders and electrical performance of its DSSC. Physica E: Low-dimensional Systems and Nanostructures, 121, 114127.
Tsai, C. H., Chuang, P. Y., & Hsu, H. L. (2018). Adding graphene nanosheets in liquid electrolytes to improve the efficiency of dye-sensitized solar cells. Materials Chemistry and Physics, 207, 154–160.
Cui, Y., Wang, W., Li, N., Ding, R., & Hong, K. (2019). Hetero-seed meditated method to synthesize ZnO/TiO₂ multipod nanostructures with ultra-high yield for dye-sensitized solar cells. Journal of Alloys and Compounds, 805, 868–872.
Ramakrishnan, V. M., Muthukumarasamy, N., Balraju, P., Pitchaiya, S., Velauthapillai, D., & Pugazhendhi, A. (2020). Transformation of TiO₂ nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. International Journal of Hydrogen Energy, 45, 15441–15452.
Castillo-Robles, J. A., Rocha-Rangel, E., Ramírez-de-León, J. A., Caballero-Rico, F. C., & Armendáriz-Mireles, E. N. (2023). Advances on dye-sensitized solar cells (DSSCs) nanostructures and natural colorants: A review. Nanomaterials, 13(13), 2043. https://doi.org/10.3390/nano13132043
Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T., & Minoura, H. (2001). Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ionics, 151, 27–34.
Mehmood, U., Rahman, S., Harrabi, K., Hussein, I. A., & Reddy, B. V. S. (2014). Recent advances in dye sensitized solar cells. Journal of Advances in Materials Science and Engineering, 2014, 974782. https://doi.org/10.1155/2014/974782
Sowbakkiyavathi, E. S., Murugadoss, V., Sittaramane, R., & Angaiah, S. (2020). Development of MoSe₂/PANI composite nanofibers as an alternative to Pt counter electrode to boost the photoconversion efficiency of dye sensitized solar cell. Journal of Solid State Electrochemistry, 24(10), 2289–2300. https://doi.org/10.1007/s10008-020-04562-2
Calogero, G., Di Marco, G., Cazzanti, S., Caramori, S., Argazzi, R., & Bignozzi, C. A. (2010). Efficient dye-sensitized solar cells using red turnip and purple wild Sicilian prickly pear fruits. International Journal of Molecular Sciences, 11(1), 254–267. https://doi.org/10.3390/ijms11010254
Shalini, S., Balasundaraprabhu, R., Kumar, T. S., Sivakumaran, K., & Kannan, M. D. (2018). Synergistic effect of sodium and yeast in improving the efficiency of DSSC sensitized with extract from petals of Kigelia africana. Optical Materials, 79, 210–219.
Shalini, S., Kumar, T. S., Prasanna, S., & Balasundaraprabhu, R. (2020). Investigations on the effect of co-doping in enhancing the performance of nanostructure TiO₂ based DSSC sensitized using extracts of Hibiscus sabdariffa calyx. Optik, 212, 164672.
Sinha, D., De, D., Goswami, D., & Ayaz, A. (2018). Fabrication of DSSC with nanostructured ZnO photo anode and natural dye sensitizer. Materials Today, 5, 2056–2063. https://doi.org/10.1016/j.matpr.2017.11.319
Bashar, H., Bhuiyan, M. M. H., Hossain, M. R., Kabir, F., Rahaman, M. S., Manir, M. S., & Ikegami, T. (2019). Study on combination of natural red and green dyes to improve the power conversion efficiency of dye sensitized solar cells. Optik, 185, 620–625.
Kabir, F., Bhuiyan, M. M. H., Manir, M. S., Rahaman, M. S., Khan, M. A., & Ikegami, T. (2019). Development of dye-sensitized solar cells based on a combination of natural dyes extracted from Malabar spinach and red spinach. Results in Physics, 14, 102474.
Maurya, I. C., Singh, S., Srivastava, P., Maiti, B., & Bahadur, L. (2019). Natural dye extract from Cassia fistula and its application in dye-sensitized solar cells: Experimental and density functional theory studies. Optical Materials, 90, 273–280.
Ammar, A. M., Mohamed, H. S., Yousef, M. M., Abdel-Hafez, G. M., Hassanien, A. S., & Khalil, A. S. (2019). Dye-sensitized solar cells (DSSCs) based on extracted natural dyes. Journal of Nanomaterials, 2019, 1–10. https://doi.org/10.1155/2019/9364925
Kocak, Y., Atli, A., Atilgan, A., & Yildiz, A. (2019). Extraction method dependent performance of bio-based dye-sensitized solar cells (DSSCs). Materials Research Express, 6, 095512. https://doi.org/10.1088/2053-1591/ab22e6
Atli, A., Atilgan, A., Altinkaya, C., Ozel, K., & Yildiz, A. (2019). St. Lucie cherry, yellow jasmine, and madder berries as novel natural sensitizers for dye-sensitized solar cells. International Journal of Energy Research, 43, 3914–3922. https://doi.org/10.1002/er.4577
Jalali, T., Arkian, P., Golshan, M., Jalali, M., & Osfouri, S. (2020). Performance evaluation of natural native dyes as photosensitizer in dye-sensitized solar cells. Optical Materials, 110, 110441. https://doi.org/10.1016/j.optmat.2020.110441
Najm, A. S., Ludin, N. A., Abdullah, M. F., Almessiere, M. A., Ahmed, N. M., & Al-Alwani, M. A. (2020). Areca catechu extracted a natural new sensitizer for dye-sensitized solar cells: Performance evaluation. Journal of Materials Science: Materials in Electronics, 31, 3564–3575. https://doi.org/10.1007/s10854-019-01800-0
Pratiwi, D. D., Nurosyid, F., Supriyanto, A., & Suryana, R. (2017). Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin). IOP Conference Series: Materials Science and Engineering, 176, 012012. https://doi.org/10.1088/1757-899X/176/1/012012
Ruhane, T. A., Islam, M. T., Rahaman, M. S., Bhuiyan, M. M. H., Islam, J. M., Newaz, M. K., & Khan, M. A. (2017). Photo current enhancement of natural dye sensitized solar cells by optimizing dye extraction and its loading period. Optik, 149, 174–183.
Güzel, E., Arslan, B. S., Durmaz, V., Cesur, M., Tutar, Ö. F., Sarı, T., & Şişman, İ. (2018). Photovoltaic performance and photostability of anthocyanins, isoquinoline alkaloids and betalains as natural sensitizers for DSSCs. Solar Energy, 173, 34–41.
Sampaio, D. M., Babu, R. S., Costa, H., & de Barros, A. (2019). Investigation of nanostructured TiO₂ thin film coatings for DSSCs application using natural dye extracted from jabuticaba fruit as photosensitizers. Ionics, 25, 2893–2902. https://doi.org/10.1007/s11581-018-2753-2
Arifin, Z., Soeparman, S., Widhiyanuriyawan, D., Suyitno, S., & Setyaji, A. T. (2018). Improving stability of chlorophyll as natural dye for dye-sensitized solar cells. Jurnal Teknologi, 80, 27–33. https://doi.org/10.11113/jt.v80.10993
Kabir, F., Bhuiyan, M., Hossain, M. R., Bashar, H., Rahaman, M. S., Manir, M. S., & Khan, M. A. (2019). Improvement of efficiency of dye sensitized solar cells by optimizing the combination ratio of natural red and yellow dyes. Optik, 179, 252–258.
Ismail, M., Ludin, N. A., Hamid, N. H., Ibrahim, M. A., & Sopian, K. (2018). The effect of chenodeoxycholic acid (CDCA) in Mangosteen (Garcinia mangostana) pericarps sensitizer for dye-sensitized solar cell (DSSC). Journal of Physics: Conference Series, 1083, 012018. https://doi.org/10.1088/1742-6596/1083/1/012018
Kabir, F., Bhuiyan, M., Hossain, M. R., Bashar, H., Rahaman, M. S., Manir, M. S., & Khan, M. A. (2019). Improvement of efficiency of dye dye-sensitized solar cells: Experimental and density functional theory studies. Optical Materials, 90, 273–280.
Liu, Y., Kim, J., & Smith, A. (2019). High-efficiency DSSCs employing [Co(phen)₃]³⁺/²⁺ and dual dye systems. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Sun, D., Patel, R., & Johnson, B. (2020). Stable SM315 and cobalt complex-based dye-sensitized solar cells. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Lee, C., et al. (2020). Efficiency optimization in YD2-o-C8 and [Co(bpy)₃]³⁺/²⁺ based DSSCs. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Kumar, D., et al. (2020). Study of copper-based redox mediators in DSSCs. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Wang, H., et al. (2020). Performance of N3 dye with iodide/triiodide in DSSCs. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Ahmed, S., et al. (2020). DSSCs based on C104 dye and traditional I⁻/I₃⁻ electrolytes. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Zhao, X., et al. (2020). Application of methoxy acetonitrile in high-performance DSSCs. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Chen, M., et al. (2020). Mixed solvent systems for improvement of DSSC performance. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Tanaka, Y., et al. (2020). Stability issues in Z-910-based DSSCs and mixed solvents. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Davis, L., et al. (2020). New co-solvents in N719 dye for use in DSSCs. Materials, 12(5), 1998. https://doi.org/10.3390/ma12051998
Tsai, C.-H., Chuang, P.-Y., & Hsu, H.-L. (2018). Adding graphene nanosheets in liquid electrolytes to improve the efficiency of dye-sensitized solar cells. Materials Chemistry and Physics, 207, 154–160. https://doi.org/10.1016/j.matchemphys.2017.12.033
Balu, M., Baiju, K. G., Subramaniam, M. R., & Kumaresan, D. (2019). Bi-layer photoanodes with superior charge collection ability and diffusion length of sub-layer nanostructures for the fabrication of high efficiency dye-sensitized solar cells. Electrochimica Acta, 319, 339–348.
Xu, L., Aumaitre, C., Kervella, Y., Lapertot, G., Rodríguez-Seco, C., Palomares, E., & Reiss, P. (2018). Increasing the efficiency of organic dye-sensitized solar cells over 10.3% using locally ordered inverse opal nanostructures in the photoelectrode. Advanced Functional Materials, 28, 1706291.
Gurulakshmi, M., Meenakshamma, A., Susmitha, K., Venkata Subbaiah, Y. P., & Mitty, R. (2020). Enhanced performance of dye-sensitized solar cells (DSSCs) based on MoS₂/single-walled carbon nanohorns electrochemically deposited on bilayer counter electrodes. ChemPlusChem, 85, 2599–2605.
Liu, W. W., Jiang, W., Liu, Y. C., Niu, W. J., Liu, M. C., Kong, L. B., & Chueh, Y. L. (2020). Interface engineered binary platinum-free alloy-based counter electrodes with improved performance in dye-sensitized solar cells. Scientific Reports, 10, 1–12.
Zhang, C., Zhang, P., & Zhang, H. (2019). Electrospun porous Fe₂O₃ nanotubes as counter electrodes for dye-sensitized solar cells. International Journal of Energy Research, 43, 5355–5366.
Kumari, M., Kundu, V. S., Kumar, S., Siwatch, S., & Chauhan, N. (2020). Nitrogen and silver co-doped one-dimensional ZnO nanostructure for optoelectronic application. Journal of Sol-Gel Science and Technology, 93, 302–308.
Tsai, C. H., Chuang, P. Y., & Hsu, H. L. Adding graphene nanosheets in liquid electrolytes to improve the efficiency of dye-sensitized solar cells, Materials Chemistry and Physics, 207, 154–160 (2018).
Yin, X., Guan, Y., Song, L., Xie, X., Du, P., & Xiong, J. The TiO₂ Hierarchical Structure with Nanosheet Spheres for Improved Photoelectric Performance in Dye-Sensitized Solar Cells, Journal of Electronic Materials, 2018.
Xu, L., Aumaitre, C., Kervella, Y., Lapertot, G., Rodríguez-Seco, C., Palomares, E., & Reiss, P. Increasing the Efficiency of Organic Dye-Sensitized Solar Cells over 10.3% Using Locally Ordered Inverse Opal Nanostructures in the Photoelectrode, Advanced Functional Materials, 2018.
Gurulakshmi, M., Meenakshamma, A., Susmitha, K., Venkata Subbaiah, Y. P., & Mitty, R. Enhanced Performance of Dye-Sensitized Solar Cells (DSSCs) Based on MoS₂/Single Walled Carbon Nanohorns Electrochemically Deposited on Bilayer Counter Electrodes, ChemPlusChem, 2020
Castillo Robles, J. A., Rocha Rangel, E., & Ramírez de León, J. A. Advances on Dye-Sensitized Solar Cells (DSSCs) Nanostructures and Natural Colorants: A Review, Journal of Composites Science, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Dasinya Journal for Engineering and Informatics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dasinya Journal for Engineering and Informatics is licensed under a